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Abstract
State-of-the-art quantum machine learning (QML) algorithms fail to offer practical advantages
over their notoriously powerful classical counterparts, due to the limited learning capabilities of
QML algorithms, the constrained computational resources available on today’s noisy
intermediate-scale quantum (NISQ) devices, and the empirically designed circuit ansatz for QML
models. In this work, we address these challenges by proposing a hybrid quantum–classical neural
network (CaNN), which we call QCLIP, for Quantum Contrastive Language-Image Pre-Training.
Rather than training a supervised QML model to predict human annotations, QCLIP focuses on
more practical transferable visual representation learning, where the developed model can be
generalized to work on unseen downstream datasets. QCLIP is implemented by using CaNNs to
generate low-dimensional data feature embeddings followed by quantum neural networks to adapt
and generalize the learned representation in the quantum Hilbert space. Experimental results show
that the hybrid QCLIP model can be efficiently trained for representation learning. We evaluate the
representation transfer capability of QCLIP against the classical Contrastive Language-Image
Pre-Training model on various datasets. Simulation results and real-device results on NISQ
IBM_Auckland quantum computer both show that the proposed QCLIP model outperforms the
classical CLIP model in all test cases. As the field of QML on NISQ devices is continually evolving,
we anticipate that this work will serve as a valuable foundation for future research and
advancements in this promising area.

1. Introduction

The recent phenomenal investment and rapid development of quantum computing hardware have ushered
in the noisy intermediate-scale quantum (NISQ) [1] era where quantum machines are expected to support
50∼ 100 qubits (quantum bits) and around 103 quantum operations in the coherence time of the physical
qubits. In table 1, we summarize the key features of two state-of-the-art quantum computers—IonQ
Forte [2] launched in 2022 and IBM Heron [3] slated for 2023. As it shows, NISQ computers suffer from
errors due to imperfect qubit control and external interference. Current error rates on NISQ devices greatly
exceeds the 10−15 error rate required for many quantum algorithms [4–12] to achieve computational
advantages. Although fault-tolerant quantum computers are theoretically feasible by incorporating quantum
error-correction protocols [13–15], their practical implementation with millions of physical qubits may take
decades of research.

NISQ algorithms [16] exploiting error-prone qubits and imperfect quantum gates to solve classically
challenging problems have recently been intensively studied in various disciplines [17–27], among which,
quantum machine learning (QML) [25–27] has shown significant advantages over its classical counterpart in
small-scale learning tasks [28–31]. With the power to access an exponentially large Hilbert space [32] and the
ability to represent complex high-dimensional distributions [30], QML models are expected to revolutionize
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Table 1. A summary on two state-of-the-art quantum computers (1Q-Gate: one-qubit gate; 2Q-Gate: two-qubit gate; SPAM: state
preparation and measurement).

Error Rate

Machine Technology Qubits # Coherence 1Q-Gate 2Q-Gate SPAM

IonQ_Forte [2] Trapped-Ions 32 ∼1 s 0.02% 0.4% 0.5%
IBM_Herona [3] Superconducting 133 <40 µs 0.1 % 2.07% 1.42%
a IBM did not provide error rates for IBM_Heron. We report the error rates for the v3 generation of 127-qubit IBM_Eagle processor as

an approximation.

a wide range of applications including material discovery [33, 34], medical health [35, 36], and financial
services [37, 38]. Despite demonstrated advantages, state-of-the-art QML models have yet to solve practical
problems due to the limited learning capabilities of QML algorithms, the constrained computational resources
available on NISQ computers, and the empirically designed circuit ansatzes for QML models.
First, most QML algorithms [27–29] focus on supervised classification by training models to predict

class labels on test data that is generated from the same distribution as the training data. However, sufficient
labeled training data for real-world tasks is usually unavailable [39, 40] or prohibitively expensive [41] to
obtain. Moreover, representations learned from supervised QML are restricted to a set of ‘golden labels’,
which greatly limits the generalization and transferability of the developed models on datasets that are
generated from different distributions [42]. Second, NISQ computers suffer from limitations in terms of
qubit number and coherence time. The input size for real-world datasets is normally millions of tensors with
millions of entries each, however, current NISQ devices can only work with small-scale toy benchmarks with
input sizes of 2× 2 or 4× 4 [43–46]. How to achieve quantum advantages in practical-scale problems with
NISQ devices is of great research significance. Third, QML models are typically implemented as
parameterized quantum circuits [43–50] consisting of a classical-to-quantum data encoder and repeated
layers of a variational quantum circuit (VQC). The circuit architecture for the data encoder and the VQC
ansatz are currently empirically designed or simply randomly assigned.

1.1. Our contributions
In this work, we address the aforementioned challenges by proposing a hybrid quantum–classical neural
network (CaNN) architecture for learning transferable visual representation, which we call QCLIP, for
Quantum Contrastive Language-Image Pre-training. Our main contributions can be summarized as follows:

• A novel QML framework for learning transferable visual representation. Instead of training a supervised
QML model for predicting human annotations, we advance the flagship Contrastive Language-Image Pre-
Training (CLIP) method [52] by proposing QCLIP, a quantum CLIP framework, which enjoys quantum-
enhanced transferability and generalization only efficiently accessible on quantum computers. QCLIP com-
bines limited NISQ resources and classical computing power to perform meaningful tasks, where CaNNs
are used to generate low-dimensional data embeddings in classical feature space, while quantum neural
networks (QuNNs) are exploited to enhance the model generalization in an exponentially large quantum
Hilbert space (section 3.1).

• Quantum encoding methods and QuNN circuit ansatzes specialized for transferable visual representa-
tion learning.We investigate various encoding methods and circuit ansatzes in the proposed QCLIP frame-
work and identify the optimal candidate circuit ansatz for each quantum component (section 3.2). We
implement QCLIP on NISQ devices and carefully study how different training configurations affect final
model performance. We provide a detailed training procedure for QCLIP (section 3.3).

• High-performance visual representation transfer on NISQ devices. We demonstrate that the hybrid
QCLIP model can be successfully trained for representation learning (section 4.1). We evaluate the rep-
resentation transferability of QCLIP using all mainstream methods including zero-shot inference, one-shot
prompt learning, and linear probing and show that QCLIP outperforms the classical CLIP model on various
datasets (section 4.2). A brief description of the experimental setup and numerical results are summarized
in figure 1.We also provide experimental results on different training configurations (section 4.3) andNISQ
IBM_Auckland quantum computer (section 4.4). Our results show that the proposed QCLIP model out-
performs the classical CLIP model in all test cases.
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Figure 1. Given a pre-trained model such as classical CLIP or QCLIP, we can transfer the learned visual representation via
(a) zero-shot inference, (b) one-shot (or few-shot) prompt learning, or (c) fully fine-tuned linear probing, We use Cifar10 [51] as
the downstream dataset and report the test accuracy of classical CLIP, QCLIP, and the accuracy improvement of QCLIP over CLIP
(denoted as∆) in the table.

2. Background

2.1. Learning transferable visual representation
Supervised representation learning methods [42, 53–59] suffer from prohibitively expensive cost on labeled
data preparation and poor representation transferability to downstream unseen datasets. Therefore, learning
transferable visual representations is proposed and become a long-standing core problem in machine
learning. Given a source domainDS with a source task TS and a target domainDT with a target task TT , the
goal of transferable visual representation learning is to improve the target function fT(·) by reusing the
representation learned fromDS and TS , whereDS ̸=DT or TS ̸= TT . Recent works [52, 60–72] encourage
models to extract underlying explanatory factors hidden in the image by using unlabeled data in an
unsupervised fashion, rather than just predicting human annotations. Provided the unlimited free raw data
available on the Internet, this produces a model with better performance, and most importantly, the learned
perception enables flexible representation transfer to downstream unseen datasets.

Among all prior arts, the CLIP method [52] has demonstrated state-of-the-art visual representation
transfer performance. CLIP collects over 400 M (image, text) pairs and trains an image encoder and a text
encoder jointly with a task-agnostic contrastive loss [66, 67]. It is worth mentioning that the text descriptions
are often referred to as ‘prompt’ and their design is critical to CLIP performance. Once the training is
complete, the quality of the visual representations learned by CLIP can be evaluated via different
methods [73] including (1) zero-shot inference by directly generalizing the learned CLIP model to an unseen
dataset; (2) one-shot (or few-shot) prompt learning by training a lightweight prompt adapter neural
network [74–76] using one (or a few) training samples per class from the target dataset; or (3) linear probing
which connects the pre-trained image encoder with a linear classifier [52, 66, 67] fully trained on a
sufficiently large number of training data from the target domain. In general, zero-shot inference and linear
probing respectively set the lower and upper bound on model transferability, while one-shot (or few-shot)
prompt learning achieves intermediate performance because it considers a more practical scenario where the
target dataset is neither completely inaccessible nor fully accessible.

2.2. QuNNs
As illustrated in figure 2, a standard QuNN begins with a classical-to-quantum encoder E(x) that encodes a
classical input vector x into a NQ-qubit quantum state |x⟩ [77]:

E : x→ |x⟩= E(x)|0⟩⊗NQ =

NQ⊗
j=1

R(xj)|0⟩ (1)

where R denotes one-qubit gates {RX, RY, RZ} or their combinations, commonly referred to as angle
encoding. Note that in this work, we exclude the amplitude encoding method due to its highO(2NQ) circuit
depth, making a QuNN more error-prone [44]. Instead, we focus on the angle encoding, which uses NQ
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Figure 2. A standard quantum neural network.

qubits and a constant-depth quantum circuit to encode a NQ-bit classical data. The generated |x⟩ state is
often referred to as a quantum input feature map and is manipulated by a subsequent VQC U(θ):

U : |x⟩ → |y(θ)⟩= U(θ)|x⟩=

(
LU∏
k=1

Uk(θk)

)
|x⟩ (2)

where U(θ) is implemented as a concatenation of a VQC ansatz in repeated LU layers, and θk is a set of
trainable variables for the kth layer. As illustrated in figure 2, VQC ansatzes used in mainstream QML
models [43–46] are normally constructed by single-qubit rotation gates followed by two-qubit entanglement
gates. The final output results are obtained by quantum state measurement,M, that maps the output
quantum state |y(θ)⟩ to a classical vector y(θ):

M : |y(θ)⟩ → y(θ) = ⟨y(θ)|M†M|y(θ)⟩. (3)

By default, qubits are measured in the z-basis for implementation simplicity. Globally the full QuNN can be
written as

Q :Q=M ◦ U(θ) ◦ E(x). (4)

A QuNN model is evaluated by a pre-defined loss function L(·) and iteratively trained to obtain optimal
parameters via hybrid quantum–classical gradient descent [78]:

L : y(θ)→ Loss= L(y(θ)) (5)

Update rule : θt+1
j = θtj − η

∂L(y(θ))

∂θj
. (6)

2.2.1. Theoretical Insights
While QML theory is continually evolving and in its nascent stages, this work provides insights on the
optimal quantum encoder and variational circuit ansatz designs (see appendix C) based on the current state
of QML theory research. However, it is important to note that the field currently lacks a standardized
consensus. As a result, the discussions presented may be subject to changes or even controversies as our
understanding of QML progresses.
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Figure 3. The overview of the proposed QCLIP framework. (a) QCLIP jointly trains an image encoder and a text encoder, which
are both implemented as hybrid classical-QuNNs. For simplicity, we only show a QuNN with single-layer VQC in this example
highlighted by a red rectangle. (b) At test time, the learned QCLIP model can be used for ¬ zero-shot inference,  one-shot
quantum prompt learning, or linear probing that is omitted in this figure.

3. Method

In this section, we present the details of the proposed hybrid quantum–CaNN architecture. In section 3.1, we
describe the general QCLIP framework, introduce QCLIP representation transfer for zero-shot inference,
one-shot (or few-shot) quantum prompt learning, and fully supervised linear probing. In section 3.2, we
present the implementation of the QuNNs used in QCLIP. Finally, in section 3.3, we discuss the training
approach of QCLIP.

3.1. The QCLIP framework
At the core of QCLIP is to learn image representations by contrasting them with the text prompt of the
images, the same as classical CLIP [52]. The idea of QCLIP is inspired by recent research advances in
quantum-enhanced feature learning [32] through exploiting quantum mechanical superposition,
entanglement, and interference principles. Instead of using purely QuNNs on small datasets as in [32], the
proposed QCLIP architecture is implemented by combining classical and QuNNs in one framework, thus,
QCLIP can leverage CaNNs for large dataset preprocessing while utilizing QuNNs for quantum-enhanced
feature adaptation and generalization.

3.1.1. QCLIP overview
As shown in figure 3(a), each high-dimensional input (image, text) pair (xi,xt) is first processed by CaNNs
to generate compact low-dimensional data embedding in the classical feature space, and then QuNNs are
utilized to further adapt the embeddings in an exponentially large quantum Hilbert space. Taking the hybrid
image encoder network as an example, it utilizes a classical ViT-B/32 model [52] to produce a
low-dimensional classical image embedding vector xci and then uses an QuNN, QuNNi(x

c
i ,θi), to map xci to

the quantum state space. A classical image embedding I is eventually generated via quantum measurements
in the z-basis. Similarly, the hybrid text encoder is implemented as a classical 12-layer 512-wide text
Transformer model with 8 attention heads [79] followed by an QuNN, QuNNt(x

c
t ,θt), to generate a text

embedding vector T. Note that I and T share a common dimensionality, specifically NQ, which corresponds
to the number of qubits utilized in the QuNNs. At the training time, QCLIP is optimized to predict the
correct pairings of a batch (with a batch size B) of (Ik, Tj) (0⩽ k, j< B) pairs using symmetric cross-entropy
loss. The ViT-B/32 and text Transformer models are particularly selected as classical feature extractors since
they have demonstrated the best performance in classical CLIP models [52].

3.1.2. QCLIP representation transfer
We evaluate the transfer capability of learned QCLIP visual representations using all mainstream evaluation
methods introduced in section 2.1. Below we describe the detailed configuration for each method.
Zero-Shot inference assumes no access to the target dataset at all. Assuming the downstream dataset has

N class names, we reuse the pre-trained QCLIP and compute the text embeddings, {T1, T2, . . ., TN}, for each
target class name, as denoted as ¬ in figure 3(b). A test image is processed by the image encoder to generate a
feature embedding, I. The similarity between I and {T1, T2, . . ., TN} is then calculated and normalized into a
probability distribution via a softmax function. We identify the most probably (image, text) pair as the
output prediction. Prior works [52] show that the transferability of the classical CLIP model is greatly
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impacted by the input text that describes the image and found that using a text template improves
performance. We follow the same text template engineering and ensembling schemes in [52].
One-Shot (or Few-shot) prompt learning targets a more practical scenario where one (or a few) training

samples per class from target datasets are available at the test time. Various prompt learning
algorithms [74–76] are recently proposed to alter the functionality of a pre-trained model across domains.
However, none of these schemes can be directly applied to work with QuNNs. In this work, we introduce a
quantum prompt learning algorithm.

As denoted as  in figure 3(b), we design a domain prompt adapter, QuNNp(I,θp), which is
implemented as a parameterized QuNN. At the training time, the quantum prompt adapter takes the image
vector I as input and generates a prompt T using one (or a few) unlabeled images xi from the target training
dataset. T has the same width as text embedding vectors and is added to all the original class embeddings to
generate an adapted set of text pairing embeddings, denoted as {Tp

1, Tp
2, . . ., Tp

N}. At the test time, we utilize
domain-adapted text embeddings {Tp

1, Tp
2, . . ., Tp

N} instead of the general QCLIP text embeddings
{T1, T2, . . ., TN} to compute the similarity between the input image and the predicted classes.
Linear probing assumes full access to the target training dataset. We adopt the established linear

evaluation protocol [52, 66, 67] to test the visual representation transfer of QCLIP, where we freeze the
QCLIP image encoder and only train a linear classification prediction layer on the output of the encoder
network. The linear classifier is implemented as a logistic regression model and fully trained on target
datasets for 1000 iterations. We then apply the whole network consisting of the QCLIP image encoder and
the linear classifier head to the test data and report the classification accuracy.

3.1.3. QCLIP implementation on NISQ computers
The classical ViT-B/32 and text Transformer respectively map the original data pair to a 512-dimensional
image/text feature vector [52], which is considered as a classical compact encoding of the input. Ideally, the
CaNNs can pass these 512-dimensional vectors to the QuNNs for further processing, however, NISQ
computers available now only have 50∼ 100 qubits. Therefore, we follow the common practice [80, 81] by
inserting a 512-to-NC fully-connected layer between the classical and quantum layers to compress the initial
feature vectors to a NC-dimensional vector that can be effectively encoded in a practically available NQ-qubit
quantum system. The relationship between NC and NQ is determined by the classical-to-quantum encoding
methods. To investigate the impact of compressed feature dimensions on the final performance, we
conducted a study of the accuracy achieved by QCLIP with different NC, as reported in figure A1 in
appendix A. The experimental results demonstrate that increasing NC leads to improved accuracy and
transferability of the QCLIP model.

In conclusion, with a fixed NQ qubits on a quantum computer, the encoder is expected to enable a larger
NC, allowing for a more accurate input representation by preserving a greater amount of information from
the classical input data. The default angle encoding, which uses NQ qubits, can only encode NQ features,
motivating the development of a denser encoder to accommodate a larger NC in this work. Furthermore, the
performance improvement with the increasing NC also indicates that advancements in technology and the
availability of more qubits will lead to improvements in the implementation scale of QCLIP and its
corresponding performance and transferability.

3.2. QuNNs
QuNNs used in QML models are currently empirically designed. In this work, we investigate various widely
used encoding methods and VQC circuit ansatzes. Based on the performance evaluation, we identify the
optimal QuNN circuits for each quantum component in the proposed QCLIP framework. We provide a full
list of candidate quantum encoding methods and VQC ansatzes studied in this work respectively
in appendices A and B.

3.2.1. Quantum image and text encoders
Figure 4 shows the QuNN circuits used in the text and image encoder networks. In this example, we consider
a QuNN with only four qubits for simplicity. The number of qubits as well as the number of VQC layers
(i.e. LU) in a generic QCLIP model can be adjusted to fit the problem of interest.
Classical-to-quantum encoder is essential for ensuring QML model accuracy, as it extracts and encodes

relevant features from classical data into a quantum format, enabling subsequent processing in the quantum
domain. However, the limited number of qubits in current quantum computers presents challenges in
effectively embedding classical data, particularly with large-dimensional input datasets. In this work, we
follow the generalized dense angle encoding [77] and present a dense classical-to-quantum encoder consisting
of a layer of RY gates followed by a layer of U1 gates, as shown in figure 4. Given a classical NC-dimensional
input vector x= (x0,x1, . . .xNC−1), a quantum input feature map is generated by applying the encoding
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Figure 4. The proposed QuNN circuit for quantum image and text encoders. Note that the shaded gates are variational gates with
trainable parameters.

circuits to the ground quantum state |0⟩⊗NQ of a NQ-qubit system where Nc = 2NQ, defining an encoder
E(x) given by (see detailed mathematical derivation in appendix A):

x→ |x⟩= E(x)|0⟩⊗NQ =

⌈NQ/2⌉⊗
j=1

cos
(x2j−1

2

)
|0⟩+ ei·x2j sin

(x2j−1

2

)
|1⟩. (7)

In contrast to the conventional encoding method represented by equation (1), which uses NQ qubits to
represent NQ features, QCLIP leverages the relative phase degree of freedom along with the angles to embed
2×more features using the same number of qubits. On top of this dense encoding method, we also explored
data re-uploading [82] and variational encoding [83] to improve QuNN performance. Experimental results
(see appendix C) show that these two methods achieve negligible accuracy improvement in an QCLIP model,
which contradicts previous conclusions from QML models [82, 83] implemented purely by QuNNs. We
interpret the main reason as that these two methods primarily provide nonlinearity to a linear QuNN, while
in a QCLIP model, nonlinearity is already sufficiently provided by the earlier CaNNs in the framework.
Considering the significant implementation and training overhead introduced by data re-uploading and
variational encoding, we do not recommend using these two methods in QCLIP.
VQCAnsatz is constructed by parameterized single-qubit rotation gates followed by nearest-neighbor

coupling of qubits using entanglement two-qubit gates in current QuNNs [43–46]. Such a circuit ansatz has
demonstrated superior expressive capability in various applications. The logic behind such designs is that
single-qubit rotations provide a way to parameterize circuits, while two-qubit gates provide entanglement
between two target qubits. Early designs [25] utilize fixed two-qubit CNOT gates to force maximum
entangling power, while recent research [43–45] explored trainable entanglement by replacing fixed CNOT
gates with parameterized two-qubit gates such as CRX(θ) [43], U3(θ,ϕ,λ) [45], or CROT(ϕ,θ,ω) [44].

We run experiments with different VQC ansatzes (see details in appendix B) in the QCLIP architecture,
results (see appendix C) show that a VQC using parameterized two-qubit CRX(θ) gates leads to significant
accuracy improvement compared to a baseline VQC with fixed two-qubit CNOT gates, demonstrating that
adaptive and flexible entanglement rather than fixed maximal entanglement performs better for a QML
algorithm, which is consistent with the conclusions in supervised QuNN models [43–45]. However, we find
that further increasing the flexibility by replacing CRX(θ) gates with U3(θ,ϕ,λ) and CROT(ϕ,θ,ω) gates
introduces significant hardware overhead and training complexity with no noticeable performance
improvement. Therefore, we present the VQC circuit implemented with two-qubit CRX(θ) in figure 4.

3.2.2. Quantum prompt adapter neural network
The quantum prompt adapter QuNNp(I,θp) takes an image vector I as input and generates a domain-
adapted text vector T. In designing QuNNp encoders, we chose the default angle encoding over the dense
encoder for two main reasons. First, maintaining the output dimensionality of QuNNp as the input vector I
is required to ensure seamless integration with the subsequent components. Second, expanding the
dimensionality of I by 2× and using the dense encoder is possibly but considered impractical. I is already a
compact representation learned by QuNNi, and increasing its dimensionality would not provide significant
benefits. Moreover, it could introduce unnecessary complexity without improving overall performance.
Through experiments, we identified the optimal circuit structure shown in figure 5 consisting of a single
layer of RX gates in the encoder and a VQC circuit employing two-qubit CRX(θ) gates for qubit
entanglement, following previous work [43].
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Figure 5. The proposed QuNN circuit for the quantum prompt adapter. Note that the shaded gates are variational gates with
trainable parameters.

3.3. Training of QCLIP
To fix the parameters in the 512-to-NC compression layer and the NQ-qubit QuNNs used in the image and
text encoders, we train the QCLIP model using CC3M [84] as a proxy dataset. The training goal is to predict
which text as a whole is paired with which image. Specifically, given a batch of B input (images, text) pairs,
QCLIP obtains respectively B image embedding vectors and B text embedding vectors. We denote (Ik, Tj)
where k= j is a positive pair and a negative pair for k ̸= j. We define a function that calculates loss using all
these possible pairs and minimizes this function via stochastic gradient descent. Intuitively, if information
can be successfully passed forward and backward in the hybrid architecture of QCLIP, the measured
similarity between representations for positive pairs will decrease, while the distance between representations
for negative pairs will increase.

3.3.1. Loss function
We consider two widely used loss functions, namely, normalized temperature-scaled contrastive loss [66, 67]
and symmetric cross-entropy loss [52, 85]. We optimize the loss over similarity scores. Experimental results
show symmetric cross-entropy loss outperforms contrastive loss for the training of QCLIP. We provide the
pseudocode of cross-entropy loss based QCLIP training in algorithm 1. We also provide details of the
contrastive loss in appendix D for comparison.

Algorithm 1. Cross-Entropy Loss based QCLIP Training.

Input:
1. Batch size: B,
2. Label: [1,2, . . . ,B],

3. Cross entropy loss: Floss =
−

∑B
i=1 li·log(pi)

B , where li is the truth label and pi is the Softmax probability for the
ith class.

Output:
1. Training loss, loss

1: Generate a batch of image embedding output vector [I1, I2, . . . , IB].
2: Generate a batch of text embedding output vector [T1,T2, . . . ,TB].
# Compute logits_image= [l_I1, l_I2, l_I3, . . ., l_IB]

3: for (i= 1; i<B+1; i++) do
4: for (t= 1; t<B+1; t++) do
5: l_Ti =

Ii·Tt
|Ii||Tt|

6: end for
7: end for
# Compute logits_text= [l_T1, l_T2, l_T3, . . ., l_TB]

8: for (t= 1; t<B+1; t++) do
9: for (i= 1; i<B+1; i++) do
10: l_Tt =

Tt·Ii
|Tt||Ii|

11: end for
12: end for

13: loss_image= Floss(logits_image, label).
14: loss_text= Floss(logits_text, label).
15: loss= 1

2 (loss_image+ loss_text).
16: return loss.

8
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3.3.2. Training method
We implement the classical ViT-B/32 and text Transformer models in PyTorch [86]. We implement the
QuNNs using PennyLane [87]. We use a mini-batch size of 128. We train the model for 75 iterations. We use
Adam optimizer and set the learning rate to 0.001.

Among all the training hyperparameters, the initialization of parameters in QuNNs emerges as the most
critical factor influencing the final performance of an QCLIP model. This is primarily due to the challenge of
exponentially vanishing gradients concerning the quantum circuit depth and qubit number. For a deeper
understanding, interested readers can refer to the theoretical discussion on the effect of parameter
initialization on the trainability and performance of QML models provided in [88]. In this work, we study
both uniform initialization and Gaussian initialization in QCLIP as detailed in appendix E. Inspired by
classical Xavier initialization [89], we utilize the information of QuNN structures in the Gaussian
initialization by definingN (0, σ2), where σ = 1/

√
NQ. Experimental results show that the Gaussian

distribution demonstrates better performance in terms of accuracy, training stability, and convergence.

4. Results and analysis

In this section, we evaluate the effectiveness of the proposed QCLIP model. We follow the general QCLIP
architecture and implement a practical design by setting NC, NQ, and LU respectively to 16, 8, and 2. We run
numerical simulations and report results on representation learning in section 4.1. To compare QCLIP with
classical CLIP, we create a baseline model by implementing classical CLIP in PyTorch. We follow the training
approaches used in the original work [52, 81], with the only difference being the insertion of a 512-to-NC

fully-connected layer in the image/text encoder. This modification is made to ensure a fair and equal
comparison between QCLIP and classical CLIP models. In section 4.2, we evaluate the representation
transferability of QCLIP and show that QCLIP outperforms the classical CLIP model on various datasets.
Section 4.3 provides exploration results for different training configurations. We also implement a
proof-of-concept QCLIP on NISQ IBM_Auckland quantum computer and report its performance results in
section 4.4.

4.1. Results on QCLIP representation learning
We first verify whether the proposed hybrid QCLIP model can be successfully trained for representation
learning. To this end, we train the QCLIP model using CC3M [84] as a proxy dataset for 70 batches and
record the training loss after each batch in figure 6(a). Results show that the loss decreases from 6.075 to
4.152 over the course of training, indicating that our model is able to learn. It is notable that the training
time for QCLIP is significantly less than classical QCLIP models, which would typically take several hundred
epochs [52]. By comparison, QCLIP is more compute-efficient, which allows us to reach higher overall
performance within a limited computing budget.

We further quantitatively study the representation learning ability of QCLIP. We adopt the widely used
Hilbert-Schmidt distance as the evaluation metric and report results on several key distances, following the
approach taken in related work [52, 81]. Figures 6(b)–(d) respectively record the distance between positive
and negative pairs (denoted as Distance), similarity within positive pairs (denoted as Positive Similarity),
dissimilarity between negative pairs (denoted as Negative Dissimilarity). Throughout the training process, we
observe that the measured similarity and dissimilarity undergo expected changes, indicating successful
information propagation both forward and backward in the hybrid architecture of QCLIP. These
quantitative results affirm that quantum components can effectively combine with classical resources to
achieve meaningful and nontrivial representation learning tasks.

4.2. Results on QCLIP representation transfer
QCLIP is pre-trained to predict whether an image and a text prompt are paired together in a source dataset.
This capability is then reused to perform zero-shot inference, one-shot prompt learning, and linear-probing, to
study the representation transfer ability on downstream datasets. To demonstrate the robustness of QCLIP
on various datasets with wide distributions, we evaluate QCLIP on four different target datasets including
MNIST [90], Cifar10 [51], OxfordPet [91], and Food101 [92].

In table 2, we summarize the performance of QCLIP on each task and highlight the accuracy
improvement (denoted as∆) provided by QCLIP compared to classical baselines. The quantitative results
show that QCLIP is robust on all tested datasets and outperforms classical CLIP on all tasks. While
supervised linear probing exhibits the upper bound on model transferability, QCLIP has the lowest
performance improvement over CLIP on this task. Notably, one-shot prompt learning benefits the most from
QCLIP with a performance improvement up to+17.21% on the Food101 dataset.
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Figure 6. The training process of QCLIP on representation learning, with the line indicating the mean and the shaded area
representing the deviation.

Table 2. Performance comparison between QCLIP and CLIP on representation transfer.

Zero-Shot One-Shot Linear probing

Dataset CLIP QCLIP ∆ CLIP QCLIP ∆ CLIP QCLIP ∆

MNIST [90] 17.97% 20.32% +2.35% 20.03% 30.51% +10.48% 59.12% 62.05% +2.93%
Cifar10 [51] 44.41% 46.40% +1.99% 46.82% 55.62% +8.80% 70.82% 76.63% +5.81%
OxfordPet [91] 17.95% 27.12% +9.17% 19.32% 33.93% +14.61% 67.73% 68.26% +0.53%
Food101 [92] 31.19% 37.97% +6.78% 32.25% 49.46% +17.21% 59.76% 64.02% +4.26%

Figure 7. QCLIP performance results on few-shot learning.

We further increase the shot number from one to ten for both classical CLIP and QCLIP and report the
few-shot performance in figure 7. The performance of few-shot prompt learning shows negligible
improvement when the shot number increases from one to ten, indicating that the accuracy of the small
domain prompt generators rapidly saturated with just very few (i.e. one per class) training data.

10
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Figure 8. QCLIP performance using different initialization methods.

Figure 9. QCLIP performance using different loss functions.

4.3. Results on different training configurations
As discussed in section 3.3, the QCLIP performance is greatly impacted by pre-defined loss functions and
parameter initialization. Since linear probing represents an upper bound of QCLIP representation
transferability, here we use it as a proxy task to explore the impact of different types of loss functions and
parameter initialization methods.

Figure 8 compares the QCLIP model accuracy on linear probing by using normalized initialization
(denoted as Q Norm) and uniform initialization (denoted as Q Uniform). Results show that Q Uniform
performs better in the first several training runs, while Q Norm provides better (8.2% higher than Q
Uniform) final accuracy. These results are consistent with the observation reported in a previous work [93].
Therefore, normalized initialization is adopted in QCLIP training.

Figure 9 reports the performance on linear probing for classical CLIP and QCLIP by using respectively
contrastive loss and cross-entropy loss. In general, cross-entropy loss improves the performance of both
classical and quantummodels. For classical CLIP training, the cross-entropy loss (denoted as C CrossEntropy)
provides a 2.2% accuracy improvement compared to the contrastive loss (denoted as C Contrastive). For
QCLIP, a significant 9.6% accuracy improvement is achieved when replacing the contrastive loss (denoted as
Q Contrastive) with the cross-entropy loss (denoted as Q CrossEntropy). Recent work on quantum
self-supervised learning [81] directly employs the contrastive loss function for QuNN training, whereas in
this work we identify the cross-entropy loss function as an optimal option and used it for QCLIP training.

4.4. Results on NISQ devices
In addition to the numerical simulation results reported in previous sections, we also implement a
proof-of-concept QCLIP on real NISQ devices and report its performance to demonstrate the effectiveness
of QCLIP. We use the IBM_Auckland quantum computer, which is a 27-qubit device with respective
0.022%, 1.164%, and 1.110% error rates for 1Q-Gate, 2Q-Gate, and SPAM. Compared with the
state-of-the-art devices reported in table 1, IBM_Auckland is a more practical NISQ device that is publicly
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Figure 10. QCLIP performance on zero-shot inference using the IBM_Auckland quantum computer.

Figure 11. QCLIP performance on one-shot prompt learning using the IBM_Auckland quantum computer.

available to average users. We adopt the pre-trained QCLIP model and implemented it on IBM_Auckland
using only 8 qubits.

We perform zero-shot inference and one-shot prompt learning on real devices and report the results
respectively in figures 10 and 11. Note that we exclude the fully fined-tuned linear probing on real devices due
to its long training latency. In general, the performance of QCLIP on real devices is decreased due to the
noisy qubits and imperfect control and measurement. Specifically, the QCLIP accuracy on zero-shot inference
drops from 46.4% to 44.4% (i.e. the final accuracy for Real Q Zero-Shot in figure 10), while the performance
on one-shot prompt learning decreases from 55.6% to 49.6% (i.e. the final accuracy for Real Q One-Shot in
figure 11). However, the classical CLIP model only achieves respectively an accuracy of 39.0% and 46.2% for
zero-shot inference and one-shot prompt learning. Therefore a quantum advantage (up to 5.4%) on
representation transferability is still reserved for real-device results.

5. Conclusion

Current QML models mainly focused on supervised classification tasks using down-sampled input data with
a very small scale, i.e. labeled images with a 4× 4 or even 2× 2 size. Such models failed to solve practical
problems and show limited generalization and transferability to unseen downstream datasets. In this work,
we propose to advance the flagship CLIP method by proposing QCLIP, a quantum CLIP framework, to
improve the performance of QML algorithms on transfer representation learning tasks. The key idea is to
leverage the quantum-enhanced transferability and generalization only efficiently accessible on quantum
computers. However, current quantum computers are all NISQ devices, which can only support 50∼ 100
qubits and a limited number of quantum gate operations. In order to leverage the limited NISQ resources to
perform meaningful tasks, QCLIP combines quantum computing resources with classical computing power
in a hybrid quantum–classical fashion, where CaNNs are used to generate low-dimensional input
embeddings in the classical feature space, and QuNNs are employed to enhance the model generalization in
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the quantum Hilbert space. We survey the mainstream QuNN implementation and study how different
encoding methods, variational circuit ansatzes, and training configurations affect the final performance of
the QCLIP model. We present a dense encoding method in this work, and also identify the optimal quantum
circuit for each quantum component in QCLIP.

We implement a small-scale QCLIP and demonstrate the proposed hybrid quantum–CaNN can be
successfully trained for representation learning. We evaluate the transfer representation learning capability of
QCLIP against the classical CLIP model using different datasets. Experimental results on numerical
simulation and NISQ IBM_Auckland quantum computer both show that QCLIP model outperforms the
classical CLIP model in all test cases.
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Appendix A. Quantum encoding methods

Here we provide a detailed mathematical derivation of equation (7). As illustrated in figure 4, the proposed
dense encoding method in this work is implemented by applying a layer of RY(x2j−1) gates followed by a
layer of U1(x2j) gates to the ground quantum state of a NQ-qubit system, where x= (x0,x1, . . .xNC−1)
represents the classical NC-dimensional input vector. The matrix representations for RY gate and U1 gate are:

RY =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
U1 =

[
1 0
0 eiθ

]
. (A.1)

The generated quantum input feature map is:

x→ |x⟩= E(x)|0⟩⊗NQ (A.2)

=

⌈NQ/2⌉⊗
j=1

U1(x2j)·RY(x2j−1)·|0⟩ (A.3)

=

⌈NQ/2⌉⊗
j=1

[
1 0
0 ei·x2j

]
·
[
cos

x2j−1

2 − sin
x2j−1

2
sin

x2j−1

2 cos
x2j−1

2

]
·
[
1
0

]
(A.4)

=

⌈NQ/2⌉⊗
j=1

[
cos

x2j−1

2
ei·x2j sin

x2j−1

2

]
(A.5)

=

⌈NQ/2⌉⊗
j=1

cos
(x2j−1

2

)[1
0

]
+ ei·x2j sin

(x2j−1

2

)[0
1

]
(A.6)

=

⌈NQ/2⌉⊗
j=1

cos
(x2j−1

2

)
|0⟩+ ei·x2j sin

(x2j−1

2

)
|1⟩. (A.7)

Therefore, we obtain the encoder function same as shown in equation (7).
To evaluate the effectiveness of the proposed dense encoding method (equation (7)) against the baseline

angle encoding method (equation (1)), we provide a performance comparison using linear probing as a proxy
task. As shown in figure A1, we denote performance results using dense encoding and the baseline angle
encoding respectively as Q Angle-8 and Q Dense-8, where 8 denotes the total number of qubits for a fair
comparison. We also provide performance results for classical CLIP using different 512-to-NC compression
layers, denoted as C NC = 8 and C NC = 16. We find that QCLIP with NQ = 8 matches the performance of a

13



Quantum Sci. Technol. 8 (2023) 045021 R Wang et al

Figure A1. QCLIP performance using different encoding methods.

classical CLIP with NC = 16 trained on the same dataset, indicating the improved representation learning
capability enhanced by QuNNs. The proposed dense encoding provides an average of 5.4% accuracy
improvement compared to the baseline angle encoding. Moreover, increasing the width of the QuNN
(i.e. NQ) improves the QCLIP accuracy, demonstrating the scalability of our approach.

We also explored data re-uploading [82] and variational encoding [83], which are two recently proposed
encoding techniques to improve QuNN performance. The key idea of data re-uploading is to repeatedly
apply the classical-to-quantum encoder, E(x), before each parameterized VQC ansatz, Uk(θk). Variational
encoding proposes to introduce trainable parameters to a classical-to-quantum encoder by defining a
variational encoder function, E(x·θ), where the parameter set θ is pre-trained to produce faithful quantum
presentations in which data from different clusters are separated. We refer interested readers to [82, 83] for a
more detailed explanation and demonstration.

Appendix B. QuNN circuit ansatzes

In this work, we survey the recently proposed QuNN circuit ansatzes and identify four designs that have
demonstrated state-of-the-art performance as shown in figure B1. We denote these four designs respectively
as C14 [43], QMLP [44], DAC22 [45], and DATE22 [46]. These four ansatzes all follow the general structure
summarized in figure 2 with a single-qubit rotation layer followed by a two-qubit entanglement layer.
Specifically, DATE22 adopt the early designs [25] that utilize fixed two-qubit CNOT gates to force maximum
entangling power, while C14, QMLP and DAC22 explore to replace CNOT with trainable entanglement
two-qubit gates.

Appendix C. Performance with different encoding methods and QuNNs

To investigate all the candidate quantum encoding methods (appendix A) and VQC ansatzes (appendix B) in
the proposed QCLIP framework, we run various experiments using Cifar10 [51] as the downstream dataset.
Based on the performance evaluation, we identify the optimal QuNN circuits for each quantum component
in the proposed QCLIP framework, including the quantum image/text encoder neural networks and the
quantum prompt adapter neural networks.

Taking the design of quantum image and text encoder as an example, we report the performance
comparison for different circuit ansatz selections using one-shot prompt learning. As shown in table C1, we
make two conclusions: (1) the proposed dense encoding method followed by the QuNN circuit ansatz in
figure 4 achieves the best performance and thus is identified as the optimal QuNN implementation for the
quantum image and text encoder neural networks. (2) data re-uploading [82] and variational encoding [83]
achieves negligible accuracy improvement or even performance degradation in such a hybrid
quantum–classical framework. Therefore, we do not recommend using these two methods in QCLIP.

We follow the similar approach described above and identify the optimal QuNN circuit for the quantum
prompt adapter neural networks shown in figure 5.
Theoretical insights. Theoretical research [94] on data encoding interprets QML models as a

Fourier-type sum, where the data encoding plays a crucial role in determining the functions the model can
access and how these accessible functions can be combined. Consequently, the data encoding significantly
influences the expressivity of the model. By applying this analysis, we propose that dense encoding
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Figure B1. Four state-of-the-art candidate QuNN circuit ansatzes.

Table C1. QCLIP performance on one-shot prompt learning using different encoding methods and VQC circuit ansatzes.

Ansatz

Encoding Scheme

Dense Reuploading Variational

C14 [43] 54.06% 53.18% 53.31%
QMLP [44] 51.61% 50.83% 50.12%
DAC22 [45] 51.61% 51.42% 52.25%
DATE22 [46] 51.25% 52.42% 51.58%
QCLIP (ThisWork) 55.62% 53.65% 53.42%

outperforms single-qubit rotation-based angle encoding, likely due to the two-layer RY-U1 gate in dense
encoding, enabling access to frequency spectra with two frequencies, in contrast to angle encoding’s single
frequency. However, it is important to consider that increasing encoding density also leads to higher training
complexity. Considering the problem set used in this work, we find the two-layer RY-U1 dense encoding to be
the optimal choice for our QML models.

The theoretical analysis in VQC circuit ansatz [43] primarily explores the impact of circuit entanglement
capacity on the expressivity of QML models. As of now, there is no universally agreed-upon optimal VQC
design, and VQC circuits are typically empirically designed. However, there is a common consensus that
adaptive and trainable entanglement capabilities can be beneficial for QML algorithms compared to fixed
maximized entanglement provided by fixed CNOT gates.

Appendix D. Loss functions

Here we formally define the contrastive loss [66, 67] that has also been explored in QCLIP training.

Contrastive loss defines two loss functions named image-to-text contrastive loss, i.e. l(I→T)
i , and

text-to-image contrastive loss, i.e. l(T→I)
t . The image-to-text contrastive loss for the ith image and the

text-to-image contrastive loss for the tth text can be calculated by the following equations (D.1) and (D.2),
where i= 1,2,..., B labels the input image feature in a batch and τ ∈ B+ represents a temperature parameter.

l(I→T)
i =−log

exp(< Ii,Tt >)/τ∑B
t=1 exp(< Ii,Tt > /τ)

(D.1)

l(T→I)
t =−log

exp(< Tt, Ii >)/τ∑B
i=1 exp(< Tt, Ii > /τ)

. (D.2)
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The final training loss is defined as the weighted sum of the above two losses. For batch training, the
averaged loss is calculated using the following equation (D.3), where λ ∈ [0,1] is a scaling hyperparameter.

loss=
1

B

B∑
p=1

(λl(I→T)
p +(1−λ)l(T→I)

p ). (D.3)

Appendix E. Parameter initialization

We study both uniform initialization and Gaussian initialization in QCLIP training. Below we provide details
for each initialization method.

Uniform initialization generates the initial values for the trainable parameters from Uniform
distribution. The general formulation is shown in equation (E.1) with a minimal value a and a maximal value
b. In QCLIP, we set the minimal and maximal values respectively to 0 and π

2 , as shown in equation (E.2).

f(x) =

{ 1
a−b , a< x< b
0, else.

(E.1)

f(weight) =

{
2
π , 0< weight< π

2
0, else.

(E.2)

Gaussian initialization generates initial values from a Gaussian distribution. We show the general
formulation for Gaussian distribution in equation (E.3) with a mean value µ and a standard deviation σ.
Inspired by classical Xavier initialization [89], we utilize the information of QuNN structures and initialize
parameters according to the network width NQ. The Gaussian initialization used in QCLIP can be formalized
by equation (E.4).

X∼N (µ,σ2), f(x) =
1√
2πσ

exp

(
− (x−µ)2

2σ2

)
(E.3)

Weight∼N (0,NQ), f(weight) =
1√
2πNQ

exp

(
−weight2

2NQ

)
. (E.4)
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