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Marissa Danielle D’Onofrio

A TRAPPED ION QUANTUM SIMULATOR FOR TWO-DIMENSIONAL SPIN

SYSTEMS

Universal, fault-tolerant quantum computing would require millions of physical qubits to prac-

tically implement most proposed algorithms, a target currently out of reach of experimental capa-

bility. In the near term, noisy systems on the order of tens of qubits can employ quantum simu-

lation of particular Hamiltonians to surpass classical computational abilities and solve interesting

problems. In particular, one-dimensional (1D) ion chains in radiofrequency (RF) traps have seen

remarkable success in simulating 1D quantum spin systems. A comparable ability to manipulate

two-dimensional (2D) ion crystals in RF traps would significantly expand the class of systems ac-

cessible to quantum simulation. Notably, 2D ion arrays are conducive to studies of many-body

systems such as geometrically frustrated lattices, topological materials, and spin-liquid states.

In this thesis, I present advances toward the goal of creating programmable, “radial-2D” ar-

rays of trapped 171Yb+ ions for quantum simulation. Qubits are embedded within two hyperfine

electronic energy levels, cooled to their motional ground state, and measured via spin-dependent

fluorescence. A precisely controlled entangling mechanism allows for the creation of a wide vari-

ety of spin models, including Ising or Heisenberg interactions. We present an experimental study

which establishes radial-2D crystals of 171Yb+ ions as a robust platform for quantum simulation,

through characterization of ion positions, structural phases, normal mode frequencies, and effects

from RF heating. We also design and experimentally demonstrate a new open-endcap, blade-style

RF trap which can confine and resolve large numbers of ions in the radial-2D crystal phase. Fi-

nally, we examine other challenges faced by trapped ion systems: optimally cooling to the motional

ground state, accurately determining ion temperature, and measuring susceptibility to the presence

of ionizing radiation.
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CHAPTER 1

INTRODUCTION

1.1 Quantum Mechanics

In a classical world, motion is governed by Newton’s second law

F = m
d2r⃗

dt2
= −∇V (r⃗), (1.1)

where complete knowledge of a system allows for its full, deterministic characterization over all

time. That is to say, given an instantaneous position r⃗ and momentum m(dr⃗/dt) of a particle with

mass m, along with a potential function V , we can solve for any other dynamical variable.

Quantum mechanics, on the other hand, does not provide a deterministic description but rather

defines the world in terms of probability amplitudes. Analogous to how position is governed by

Newton’s 2nd law, quantum mechanical dynamics are governed by the Schrodinger equation

iℏ
∂

∂t
Ψ(r⃗, t) = HΨ(r⃗, t), (1.2)

where the wavefunction Ψ(r⃗, t) is a complex probability amplitude containing all available infor-

mation about the system, and H is the system’s Hamiltonian.

An interesting property of quantum mechanics is that the state vector |Ψ⟩ of a physical system

can be in a superposition of several possible states at the same time. For example, the wavefunction

for an N-particle, two-level system is

|Ψ⟩ =
∑
si=↑,↓

asi...sn |si...sn⟩ , (1.3)

which has 2n probability amplitudes. Quantum mechanics also gives rise to genuinely non-classical
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properties such as entanglement and non-local correlations, resulting in phenomenon such as the

Einstein-Podolsky-Rosen (EPR) paradox [1].

1.2 Quantum Computation and Simulation

Classical computational bits work within the binary {0, 1}, and so the number of classical bits

required to simulate a quantum system such as Equation 1.3 scales exponentially with particle

number. Simulating a system of only 300 two-level quantum particles would require 2300 classical

bits, which is greater than the number of atoms in the known universe. That would be hard to build!

In Richard Feynman’s famous 1982 lecture [2], ‘Simulating Physics with Computers,’ he proposed

an alternative to a classical probability simulator: using a computer that is itself probabilistic.

In such a computer, each experiment does not yield the same result as nature. Rather, after

repeating an experiment enough times, it is the frequency of final states proportional to the number

of repetitions that should match nature. Feynman also proposed a universal quantum simulator,

or so-called quantum computer, with which any local quantum mechanical system can be simu-

lated efficiently. This postulate was shown to be correct by Seth Lloyd in 1996 [3], who proved

that evolving in small time steps would allow polynomial rather than exponential growth in the

overall time required to simulate any many-body quantum Hamiltonian containing few particle

interactions.

Around this time, the field of quantum computing took off. In 1989, David Deutsch discovered

a problem which can be solved faster with a quantum computer than a classical one [4]. Soon after,

in 1994, Peter Shor showed that the prime factorization of an integer could be solved efficiently

on a quantum computer. The DiVincenzo criteria, or the necessary criteria for a universal quantum

simulator, were explicitly specified in 2000 [5]. They include a scalable physical system with a

well-characterized qubit, a method of state initialization, a method for universal gate implementa-

tion, long coherence times, and a method for measurement and state readout. Unfortunately, this

set of criteria results in a catch-22: the system must be well-isolated in order to retain its quantum

properties, but it also must be accessible to the world in order for us to perform computation and
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read results.

The long-term solution to the DiVincenzo criteria’s catch-22 will most likely require quan-

tum error correction (QEC) protocol. The objective of QEC is fault-tolerant quantum computing,

where errors are corrected faster than they’re created. However, for the presently available quantum

devices on the order of 100 qubits, the required overhead for fault-tolerance is out of range of ex-

perimental capability [6]. Returning to Feynman’s original proposal, we can design non-universal

quantum simulation devices as a way to harness as much computational power as possible from

the systems currently available to us.

Non-universal quantum simulators are special purpose devices, programmed to provide insight

about specific physical systems. These simulators can be ‘digital’ simulators, where the desired

Hamiltonian is constructed through a Trotterization [7]

e−iHt ≈ (e−iH1t/ne−H2t/n...e−iHnt/n)n (1.4)

of n steps, or they can be ‘analog’ simulators, which continuously follow a Hamiltonian that maps

mathematically to a desired physical system [8]. Quantum simulators have been realized in many

physical systems, including trapped ions [9], optical lattices [10], nuclear magnetic resonance

systems [11], and superconducting circuits [12].

1.3 Ion Trap Quantum Simulation

Trapped ions were identified by Cirac and Zoller in 1995 as the first realistic system with which

to implement a quantum computer [13]. Later that year, the first controlled bit flip on two qubits

embedded in a single ion was demonstrated by David Wineland’s group at NIST [14], representing

the birth of experimental quantum computing. The first universal gate set on a 2-ion string was

performed by Schmidt-Kaler in 2003 [15]. Since then, trapped ions have remained a frontrunner

in the push for fault-tolerant quantum computation [16, 17, 18] and have seen remarkable success

in simulating quantum spin systems [9, 19, 20], .

3



A major benefit of trapped ions is the provision of identical qubits. This thesis discusses a

trapped ion platform using 171Yb+, which along with the general benefits of trapped ions also has

specific advantages. The qubit states of 171Yb+ are hyperfine ground states with effectively infinite

lifetimes. Under ultra-high vacuum (UHV), the longest measured coherence time of a 171Yb+

qubit state is one hour at room temperature [21]. Readily available laser-cooling techniques allow

for ions to be cooled to mK temperatures within milliseconds, and additionally cooled to near the

motional ground state. The absence of thermal motion, combined with the 5 − 10 µm separation

between ions due to the Coulomb interaction, allows for qubit state detection with near-perfect

efficiency [22]. State initialization through optical pumping also yields typical fidelities > 99%,

and effective spin interactions can be varied over a wide range- making ions especially well-suited

for simulating long-range spin models [9].

1.3.1 Two-Dimensional Ion Crystals

The majority of quantum simulation experiments have been performed on one-dimensional (1D)

chains of ions, but many applications of quantum information processing experiments are not well-

matched to the capabilities of this linear geometry. In particular, quantum simulation of interesting

many-body systems such as geometrically frustrated lattices, topological materials, and spin-liquid

states would benefit from native two-dimensional (2D) geometries [23, 24, 25, 26, 27]. In addition,

2D arrays can hold larger numbers of qubits more efficiently than 1D strings, with a higher error

threshold for fault-tolerance [28, 29], and may simplify preparations of 2D cluster states for one-

way quantum computing [30, 31].

A number of efforts are underway to control and probe 2D ion crystals. Penning traps in partic-

ular have been quite successful in simulating and studying quantum spin models [19, 32], though

the fast crystal rotation in such traps poses a significant challenge to individual ion addressing.

Other 2D efforts include microfabricated ion arrays [33] with ions trapped in individual harmonic

wells, dynamical engineering of effective 2D lattices using 1D chains [34], and quantum charge

coupled device (QCCD) architecture where ions are rearranged and transported between trapping

4



regions and gate regions [16]. In order to keep traditional ion trap strengths such as individual ad-

dressing, site resolved measurements and readout, and fast coupling rates, we have elected to build

a radiofrequency (RF) Paul trap, with parameters chosen carefully such that ions self-assemble into

a 2D Coulomb crystal. This thesis presents the experimental implementation of such a system, and

the chapter outline is included below.

1.4 Thesis Outline

Chapter 2 provides a theoretical background for quantum simulation with 171Yb+. First we look at

the Paul trap, describing the resultant trapping potential and how to use this potential to create two-

dimensional Coulomb crystals. We define a qubit within the electronic energy levels of 171Yb+,

outlining methods to cool the ion as well as detect and initialize the qubit state. Finally, we describe

coherent qubit rotations and entanglement operations via stimulated Raman transitions.

Chapter 3 describes the experimental implementation of all the methods presented in Chapter

2. It gives an overview of the home-built Paul traps used in experiments and integral hardware such

as the vacuum chamber, voltage control, optical pathways, and imaging system. All the experi-

mental setup and calibrations that must be performed before an ion can be trapped are described

in this chapter- for example, aligning the imaging system and optical pathways, and locking laser

frequencies.

Chapter 4 describes experimental sequencing, beginning with implementation of the Artiq con-

trol system and associated Sinara hardware. This chapter includes all the troubleshooting proce-

dures that can be applied when first trapping 171Yb+ as well as the optimization procedures that

follow. A daily protocol is outlined which results in the realization of an entangling gate.

Chapters 5 and 6 discuss single-ion studies performed in a rod-style linear Paul trap. The

former improves on standard atomic physics techniques for cooling and thermometry, and the

latter contributes to our understanding of radiation effects in trapped ion systems. Chapter 5

demonstrates methods for optimized pulsed sideband cooling (SBC) and enhanced thermometry of

trapped ions as presented in [35]. It reviews the standard theory of pulsed resolved SBC and recasts
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the problem into a matrix formalism that allows for efficient optimization of SBC pulse sequences.

After extensive cooling, we find that the ion motional distribution is distinctly nonthermal and

thus not amenable to standard thermometry techniques. We therefore develop and experimentally

validate an improved method to measure ion temperatures after sideband cooling.

Chapter 6 discusses the real-time susceptibility of trapped-ion systems to small doses of ion-

izing radiation, as presented in [36]. We expose an ion-trap apparatus to a variety of α, β, and

γ sources and measure the resulting changes in trapped-ion qubit lifetimes, coherence times, gate

fidelities, and motional heating rates. No quantifiable degradation of ion trap performance is found

in the presence of low-dose radiation sources for any of the measurements performed, an encourag-

ing finding for the long-term prospects of using ion-based quantum information system in extreme

environments.

Chapter 7 details an experimental study which establishes radial-2D crystals as a robust exper-

imental platform for quantum simulation [37]. This chapter demonstrates, using arrays of up to 19

171Yb+ ions, that the structural phase boundaries of radial-2D crystals are well-described by the

pseudopotential approximation despite the presence of micromotion. Heating rate measurements

verify that the transverse motional modes, used in quatum simulation schemes, are well-predictable

numerically and can remain decoupled from the radial modes.

Chapter 8 presents the design and experimental demonstration of an open-endcap radio fre-

quency trap for radial-2D crystals [38]. The central axis of the trap is kept free of obstructions

to allow for site-resolved imaging in the 2D crystal plane, and confining potentials are provided

by four segmented blade electrodes. We discuss design challenges, fabrication techniques, and

voltage requirements, and we validate the trap operation by confining up to 29 ions in a radial-2D

triangular lattice.

Chapter 9 gives an overview of current lab efforts and outlook for future directions.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Section overview

Section 2.2 will describe the Paul trap. First I will show how an oscillating RF voltage and a static

DC voltage can be combined to trap charged particles. Then I will describe how the resulting

potential can be approximated as a harmonic oscillator where ions off the trap center experience

driven micromotion. This section will also summarize how trap voltages can be defined to result in

a two-dimensional triangular lattice configuration favorable for quantum simulation experiments.

In Section 2.3, we will take a look at the electronic energy levels of 171Yb+ and I will describe

how it can be ionized and cooled. We will see how the 171Yb+ ion is realized as an effective

spin-1/2 system for quantum simulation experiments by defining two qubit states which can be

initialized and detected using cyclic transitions. Finally we will describe how stimulated Raman

transitions can be used to perform coherent operations for qubit manipulation in quantum simula-

tion as well as to sideband cool the ion to near-zero temperatures.

2.2 The Paul Trap

The linear Paul trap is a type of ion trap that relies on dynamic and static electric fields in order

to bypass Earnshaw’s theorem, which states that in free space it is not possible to create a 3D

potential minimum out of static charges. This is a consequence of the fact that any potential Φ(r⃗)

satisfying Laplace’s equation

∇2Φ = 0 (2.1)

can have no maxima or minima. The Laplace condition imposes that, for an electric quadrupole

potential of the form

Φ(x, y, z) = αx2 + βy2 + γz2, (2.2)
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the constants α, β, and γ must satisfy the condition α + β + γ = 0. One way to satisfy this

condition is by setting α = β, γ = −2α, which results in the static 3D field

Φ(x, y, z) = α(2z2 − x2 − y2). (2.3)

In a linear Paul trap [39], an oscillating RF voltage V0 is applied jointly with the static DC

voltage U0, to create a rotating potential saddle. Near the center of the trap, the potential then has

the form

Φ(r⃗, t) = ΦRF (r⃗, t) + ΦDC(r⃗)

=
V0 cos(Ωtt)

2r20
(x2 − y2) +

κU0

2z20
(2z2 − x2 − y2)

(2.4)

where r0 and z0 are the radial (x, y) and axial (z) trap dimensions, Ωt is the trap drive frequency,

and κ is a geometric factor of order 1. This trapping potential gives rise to secular motion, which

can be approximated as a harmonic pseudopotential, as well as micromotion- small, fast oscillation

at the RF drive frequency which affects ions off the RF null.

2.2.1 Trapping Potential and Secular Frequencies

The equation of motion for a particle of mass m and charge Q in an electric field is

F⃗ = Q∇Φ(r⃗) = m
d2

dt2
(r⃗). (2.5)

Substituting our ion trap potential (Equation 2.4) into Equation 2.5 results in the Mathieu equations

d2ri

dζ2
+ [ai + 2qi cos(2ζ)]ri = 0 (2.6)

for directions i ∈ {x, y, z}, dimensionless time ζ = Ωtt
2

, and Mathieu parameters

ax,y =
4QκU0

mz20Ω
2
t

, qx = −qy =
2QV0

mr20Ω
2
t

. (2.7)
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Figure 2.1: The motion of an ion in a Paul trap as described by Equation 2.8, where I have set Ωt

= 27 MHz, ωi = 0.2 MHz, and qi = 0.1. The large amplitude motion is the trap secular frequency,
and the overlaid small, fast oscillations are known as micromotion.

for ion mass m and charge Q, and κ is a geometric factor of order unity.

For ai < q2i ≪ 1, the solution (to first order in a and second order in q) is given by

ri(t) = Ai

(
cos(ωit)

[
1 +

qi
2
cos(Ωtt) +

q2i
32

cos(2Ωtt)

]
+βi

qi
2
sin(ωit) sin(Ωtt)

) (2.8)

for βi ≈ (ai + q2i /2)
1/2 and Ai dependent on initial conditions. Particle motion in the trap is stable

when 0 ≤ βi ≤ 1 in all three directions, and so in order to design a stable trap, parameters such as

voltage and frequency (on which the a and q values depend) must be carefully chosen.

The large amplitude motion at ωi is the secular motion, with resonant frequencies ωi = βiΩt/2,

while the fast, small oscillation at Ωt is known as micromotion. The motion described by Equa-

tion 2.8 above is shown in Figure 2.1.
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At mK temperatures, the secular motion of an ion near the center of a near radially-symmetric

trap potential is well-described by the 3D harmonic pseudopotential

QΦ(x, y, z) =
1

2
m

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. (2.9)

Under this pseudopotential approximation, the trap secular frequencies can be written

ωx ≈ ωy =

√
Q

m

(
qV0

4r20
− κU0

z20

)
, ωz =

√
Q

m

2κU0

z20
. (2.10)

Following Equation 2.8 above, micromotion drives the ions’ radial coordinates about their

equilibrium positions as

r⃗(t) = r⃗0 + r⃗1 cos(Ωt) + r⃗2 cos(2Ωt) + ... (2.11)

with coefficients |r⃗1| = q
2
r0 and |r⃗2| = q

2

32
r0. For a stable trap, q ≪ 1; in this regime the micromo-

tion amplitude is generally well approximated by |r⃗1|.

2.2.2 Structural Phases of Ion Crystals

If the trap axial frequency wz is increased relative to the radial frequency ωr, a crystal of N ions

will pass through a series of structural phase transitions as shown in Figure 2.2. Beginning in

a 1D chain configuration, ions will pass through 2D zig-zag and 3D spheroidal configurations

before breaking into a 2D crystal in the radial plane. Under the pseudopotential approximation,

this radial-2D phase is achieved when the trap aspect ratio ωz/ωr > (2.264N)1/4 [40].

For the higher-α phases, ions that lie away from the trap’s central axis are subject to rf-driven

micromotion as defined in Equation 2.11. The radial-2D phase has been the primary interest of

theoretical studies of 2D ion crystals, though there is also a body of working using ‘lateral’ 2D

crystals- an extension of the zig-zag phase with highly non-degenerate radial frequencies. Further

discussion and characterization of radial-2D crystals for quantum simulation is provided in Chapter
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Figure 2.2: For low axial confinement (top), ions spread out in a chain along the RF null. As
axial confinement is increased relative to radial confinement, they will go through a series of phase
transitions involving a 2D zig-zag configuration (second from top) and 3D spheroidal phases (sec-
ond from bottom), before aligning into a triangular lattice in the radial plane (bottom, shown from
side).

7.

2.2.3 Normal Modes of Motion

The potential

V (x, y) =
∑
i

(
1

2
mω2

xx
2
i +

1

2
mω2

yy
2
i ) +

∑
i<j

Q2

4πϵ0rij
(2.12)

experienced by i ions in the radial-2D lattice is a combination of the confining potential of the Paul

trap and repulsive Coulomb potential between ions. Here,
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rij =
√

(xi − xj)
2 + (yi − yj)

2, and the equilibrium ion positions are the set of coordinates

{xi, yi} which minimize the energy. For small numbers of ions, this can be done with direct nu-

merical minimization, and finding the equilibrium position for large numbers of ions is generally

achieved with a molecular dynamics simulation with added dissipation [26].

Any small perturbation of an N -ion lattice from equilibrium creates an oscillation about equi-

librium, with motional components along the three trap principal axes. Ions remain coupled by the

Coulomb potential, and complex oscillatory motion can be decomposed into 3N normal modes

of vibration. Axial (transverse) motional modes are used for the quantum simulation protocol de-

scribed in Section 2.3.2. To calculate these vibrational modes, the Coulomb potential is expanded

to second order about the equilibrium positions and diagonalized in order to find the eigenvectors

bki and eigenvalues ωk. The axial trapping potential for i ions to second order is given by

V (z) =
∑
i

1

2
mω2

zz
2
i +

Q2

4πϵ0

∑
i ̸=j

1

r3ij
(zizj − z2i ). (2.13)

In a radial-2D crystal, the highest frequency motional mode is the center-of-mass (COM) mode,

in which all ions move back and forth with uniform motion. The eigenvector of the COM mode is

always (1/N)[1, 1, 1, ...1]T , and the eigenfrequency is the axial trap secular frequency ωz. The low-

est frequency mode is the zig-zag mode, in which alternating ions oscillate in opposite directions.

The trapping potential determines the spacing between these modes and the ‘forest’ of modes

between them, and each mode makes a contribution to the interaction Hamiltonian described in

Section 2.3.2.

This description of normal modes has ignored micromotion, which adds time-dependence to

the equilibrium positions of the ions. Our results in Chapter 7 suggest that this is valid, though a

time-dependent method for motional mode analysis has been included in Appendix A.
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Figure 2.3: Relevant levels of a 171Yb+ atom are shown. The spin qubit states |0⟩ and |1⟩, high-
lighted in purple, are embedded in the two m = 0 ground states of the 2S1/2 manifold. Most
relevant operations are performed along the 369 nm 2S1/2 →2 P1/2 transition line, highlighted in
blue. A 935 nm repump, highlighted in green, is required to close the cycle on this transition, as
there is a small chance of decaying from 2P1/2 to the long-lived 2D3/2 state.

2.3 The 171Yb+ Qubit

Our effective spin-1/2 state, or qubit, is embedded in two hyperfine ground states of a 171Yb+ ion,

for which the relevant electronic energy levels are shown in Figure 2.3. Ytterbium is similar to an

alkaline earth metal; after a single ionization, it is left with one valence electron and a hydrogen-
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like electronic energy structure. Hyperfine sublevels arise from its spin-1
2

nucleus, resulting in four

ground states (the 2S 1
2

manifold) which correspond to the singlet state |f = 0,m = 0⟩ and triplet

state {|f = 1,m = −1⟩, |f = 1,m = 0⟩, |f = 1,m = −1⟩}, for hyperfine manifolds f = {0, 1}

and magnetic quantum number m = {−1, 0, 1}.

Hyperfine ground states are advantageous as qubits due to their effectively infinite lifetimes,

and the m = 0 states are first-order insensitive to any external electric or magnetic field pertur-

bations. We choose the qubit states |0⟩ ≡ |f = 0,m = 0⟩ and |1⟩ ≡ |f = 1,m = 0⟩, to form an

effective spin-1/2 system. These states, highlighted purple in Figure 2.3, may be referred to respec-

tively as the ‘dark’ and ‘bright’ states or ‘spin-up’ and ‘spin-down’ states, and they are separated

by wHF = 12642812118.5 Hz + 310.8B2 (Hz/G). Applying an external magnetic field B induces a

Zeeman splitting of δZeeman = 1.4 MHz/G, which allows us to decrease coupling to the non-qubit

ground states (f = 1; m = −1,+1) and avoid coherent population trapping [41] by shifting the

Zeeman levels away from the ωHF transition.

2.3.0 Ionization Process

171Yb+ is created through a two-photon ionization process of neutral 171Yb, as shown in Figure 2.4.

Light at 398.9 nm excites the 1S0 ↔ 1P1 transition, and then any wavelength below 394.5 nm can

send the electron into the continuum, resulting in ionization [42]. The two laser frequencies we use

to excite from the 1P1 state to the continuum are 355 nm and 369 nm, as these frequencies serve

other primary purposes in our lab and are therefore easily accessible.

2.3.1 The Versatile 369 nm Transition

The 369 nm 2S 1
2
→2 P 1

2
transition serves many purposes, providing the first stage of laser cooling,

state initialization, and state detection/discrimination.
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Figure 2.4: Neutral 171Yb is ionized through a two-photon process. Light at 398.9 nm excites
the 1S0 ↔ 1P1 transition, and then any wavelength < 394.5 nm can send the electron into the
continuum, resulting in ionization. The frequencies used in our lab to excite from the 1P1 state to
the continuum are 355 nm and 369 nm.

2.3.1 Doppler Cooling

Following ionization of a 171Yb atom, we use Doppler cooling to bring it closer to its ground

state. Doppler cooling is a mechanism that utilizes light slightly red-detuned below an electronic

transition, such that counter-propagating ions are more likely to absorb photons [43]. When a near-

resonant photon is absorbed, the energy ℏω of the light raises the internal energy of the ion and

alters the internal angular momentum by l = ±1, whereas the linear momentum p⃗ = ℏk⃗ changes

the motion of the atoms in the lab frame. In the case of well-directed light from a laser beam, the

momentum exchange between the light and atoms results in the force

F⃗ =
dp⃗

dt
= ℏk⃗Γ (2.14)
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where Γ is the excitation (scattering) rate of the ions. Since k⃗ is counter to the ion’s initial velocity,

the ion slows. For a low enough light intensity, ions are likely to return to the ground state via

spontaneous emission. The emitted photon then carries off momentum ℏk in a random direction

such that the momentum exchange due to emission averages to zero. Thus the net force on the ion

is equivalent to that from absorption, illustrated in Figure 2.5.

The scattering rate is given by the Lorentzian

Γ =

I
Isat

γ
2

1 + I
Isat

+ 4∆
2

(γ)
2

(2.15)

where γ/2π is the natural linewidth (19.6 MHz for 171Yb+), ∆ is the laser detuning from resonance,

I is the laser intensity, and the saturation intensity

Isat =
πhcγ

3λ3Rbr

(2.16)

is the intensity necessary to create equal populations in the ground and excited state of the ion.

Here Rbr is the branching ratio, and λ is the transition wavelength.

Solving the energy rate equation as outlined in [44] shows that the Doppler cooling limit can

be found by setting ∆ = −γ/2, with I/Isat ≪ 1. Assuming a Maxwell-Boltzmann velocity

distribution, this gives the temperature relation

kBT =
ℏγ
2

(2.17)

which we can then equate to the energy of a harmonic oscillator level EHO = ℏω(n + 1/2) for

secular trap frequency ω. Doing so gives an minimum average occupation value

n̄min ≈ γ

2ω
. (2.18)

In the case of the 2S1/2 →2 P1/2 transition in 171Yb+ and a trap frequency ω = 2π × 1 MHz,
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we find a Doppler cooling limit of .5 mK or n̄ ≈ 10. Note that the above derivation is one-

dimensional; Doppler cooling must be performed along all three trap axes, and the cooling rate

may be different for each.

Figure 2.5: An illustration of the Doppler cooling mechanism. (a) A photon traveling left with
momentum ℏk⃗ is absorbed by an ion traveling to the right with velocity v⃗. (b) The ion’s velocity
slows due to momentum exchange, and the photon is re-emitted in a random direction. This mech-
anism is repeated many times such that the momentum exchange due to emission averages to zero
and the net force on the ion is opposite its initial direction of motion. Cold ions are happy ions!

In a radial-2D configuration, the ion crystal experiences micromotion along the radial direction

but not axial. The existence of micromotion in an ion array makes Doppler cooling qualitatively

different (and more complex) in the radial directions than cooling a single ion or linear chain. As

ions travel back and forth during a period of micromotion, they see a time-dependent Doppler

shift of the cooling laser frequency. This leads to a single-ion cooling profile that is no longer

Lorentzian, as well as an uneven fluorescence profile over the crystal. The cooling rate for an ion

experiencing micromotion can be found using the optical Bloch equations, or approximated by

including micromotion Doppler shifts in the laser damping term of pseudopotential theories [45].

Laser cooling rates under micromotion are sensitive to the frequency modulation index

β = k⃗ · qr⃗s/2 (2.19)

where k⃗ is the wavevector of the cooling laser, q is the Matheiu q parameter, and rs is the ion
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displacement due to micromotion. Depending on array size and ion position in the array, this mod-

ulation can change the sign of the damping rate so that heating occurs where cooling is expected,

or it may mean that the cooling laser is no longer near resonance. A partial solution to this is

multi-tone laser cooling, which demonstrably allows the trapping and cooling of larger radial-2D

crystals than with a single tone Doppler beam [46].

Figure 2.6: Optical Pumping (left): Stimulated transitions (solid, purple) bridge the 2S1/2 and
2P1/2, f = 1 manifolds, and the ion decays with a 1/3 probability of initializing to |0⟩. All allowed
decays from the 2P1/2 manifold are depicted as dashed blue lines, with the applicable transitions
to |0⟩ highlighted. Repeating this cycle many times ensures state initialization with high fidelity.
Detection (right): Stimulated transitions (solid, purple) excite ions from 2S1/2, f = 1 to 2P1/2,
f = 0, which then decay (dashed, blue) back to the 2S1/2, f = 1 manifold, creating a closed
cycle. By continuously stimulating this cycle, an ion in state |1⟩ will result in the emission of
many photons, whereas the the 12.6 GHz detuning between |0⟩ and |1⟩ prevents fluorescence from
|0⟩ (as indicated by the red arrow). This provides a detection method which discriminates between
the two qubit states. [Not pictured: Decay from 2P1/2 to 2D3/2 and 935 nm repump]

2.3.1 State Initialization

Prior to performing a quantum simulation, we initialize all ions to the |0⟩ state via optical pumping,

as shown in Figure 2.6. Stimulated transitions bridge the 2S1/2 and 2P1/2, f = 1 manifolds, and
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the ion decays to |0⟩ with 1/3 probability. The |0⟩ state is detuned by 12.6 GHz from the optical

pumping beam, and so any population which decays to |0⟩ becomes trapped. Repeating many

optical pumping cycles ensures state initialization with high fidelity.

2.3.1 Detection

To detect the spin state of an ion, we create a closed cyclic transition between the |1⟩ state and the

first excited state using resonant 369 nm light. Stimulated transitions resonantly excite ions from

2S1/2, f = 1 to 2P1/2, f = 0, which then spontaneously decay back to the 2S1/2, f = 1 manifold

after about 8 ns. Since a decay from 2P1/2, f = 0 to |0⟩ is forbidden, continuous stimulation of

this cycle will result in the emission of many photons from an ion beginning in state |1⟩. The 12.6

GHz detuning between |0⟩ and |1⟩ ensures that very few photons are scattered from |0⟩, providing

a detection method which discriminates between the two qubit states as shown in Figure 2.6.

The 2P1/2 state will decay to 2D3/2 ∼ .5% of the time. The 2D3/2 state has a lifetime of 52.7

ms and can trap the ion for the duration of the detection cycle, which is typically < 1 ms. In order

to close the detection transition, we use a 935 nm repump beam, highlighted green in Figure 2.3,

to excite the ion to the 3[3/2]1/2 bracket state which decays back to the 2S1/2 manifold in 37.7 ns.

For a perfectly closed cyclic transition, the probability of detecting n photons during a detection

cycle would be

Pbright(n) =
e−λ0λn

0

n!
, (2.20)

with a mean number of detected photons λ0 dependent on the scattering rate.

However, off-resonant coupling to the 2P1/2, f = 1 manifold, which may decay to either spin

state, can result in detection error. The 2.1 GHz separation between the 2P1/2 hyperfine manifolds

results in about a 10−5 probability of off-resonant coupling [47]. The presence of off-resonant

coupling shifts the Poissonian bright distribution and adds an exponentially decaying probability

of photon detection from a dark ion [48]. An example of the photon detection distribution curve

for one ion is shown in Figure 2.7; the area where the dark and bright curves overlap represents

detection infidelity. A balance between collecting more photons via longer detection times and
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Figure 2.7: The photon count distribution curve for ion detection consists of a Poissonian bright
distribution, as well as an exponentially decaying dark distribution which occurs due to off-
resonant coupling. The overlap between the bright and dark distributions represents detection
infidelity.

avoiding off-resonant coupling via shorter detection times is experimentally calibrated to maximize

fidelity.

Finally, an ion will occasionally “go dark”, meaning it won’t respond to any 369 nm light.

When this happens, the ion can often be brought back using 355 nm light. A plausible explanation

for this, related to higher-level bracket states, is given in Section 2.2.2 of [49]. If 355 nm light does

not work to bring back dark ions, they are most likely doubly ionized (if they go dark during an

experiment) or a different isotope (if they load dark).

2.3.2 Coherent Operations

To visualize the state of an ion, we use the Bloch Sphere representation shown in Figure 2.8. The

north and south poles of the sphere, along the ±z direction, correspond to states |0⟩ and |1⟩, and

all points on the sphere can be represented by

|Ψ⟩ = cos(
θ

2
) |0⟩+ eiϕ sin (

θ

2
) |1⟩ . (2.21)
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Figure 2.8: A qubit state |Ψ⟩ can be represented as a vector on the Bloch sphere, where |0⟩ is along
the +z direction and |1⟩ is along the −z direction. Two angles, θ and ϕ, completely specify the
general state |Ψ⟩ = cos θ

2
|0⟩+ eiϕ sin θ

2
|1⟩.

The time evolution of the ionic state varies with spherical coordinates ϕ and θ, and a unitary

operator U(t) can be defined in terms of the rotation operator

R(θ, ϕ) = ei
θ
2
σϕ = cos

θ

2
I + i sin

θ

2
σϕ (2.22)

where

σϕ = cosϕσx + sinϕσy (2.23)

for Pauli operators σx and σy.

We have two ways of physically controlling an ion’s state vector. The first is via microwave

transitions resonant with the 12.6 GHz hyperfine splitting, which couple the magnetic dipole mo-

ments. The second is via two-photon stimulated Raman transitions induced by optical fields. Cou-

pling to both internal and external degrees of freedom is required for communication between
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qubits, which makes optical radiation the preferred method. An ion’s motional state changes with

photon absorption or emission due to recoil energy Er = (ℏk)2/2m, whereas microwave entan-

gling operations require an external magnetic field gradient. Faster interactions are also achieved

optically as λlaser ≪ λrf .

In our lab, microwave radiation is typically used for troubleshooting and beam alignment pur-

poses, while most coherent operations stem from stimulated Raman transitions using high intensity

355 nm light. A three-level system undergoing stimulated Raman transitions is shown in Fig-

ure 2.9. A forbidden transition between states |0⟩ and |1⟩ is achieved by off-resonantly coupling

both states to an excited state |e⟩ via laser fields at frequencies ωL0 and ωL1. A large detuning ∆

from |e⟩ allows for the adiabatic elimination of the excited state.

Figure 2.9: A stimulated Raman transition drives rotations between qubit states |0⟩ and |1⟩. The
states are off-resonantly coupled (with detuning ∆) to the 2P1/2 state (|e⟩) by the ‘beatnote’ be-
tween two laser fields at frequencies ωL0 and ωL1.
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The next two sections present a theoretical overview of the coherent operations used experi-

mentally on a day-to-day basis1. A mathematically rigorous treatment of the more cursory deriva-

tions can be found in [47], [50], and [49].

2.3.2 Qubit Rotations

In this section, we write down the Hamiltonian for rotations in a monochromatic microwave or

laser field, as well as an analogous Hamiltonian for stimulated Raman transitions. Focusing on

a few special laser frequencies and pulse durations, we see how these Hamiltonians allow us to

control the qubit state and couple qubit states to motional states.

The relevant Hamiltonian consists of an interaction between a spin-1/2 system, a harmonic

oscillator potential, and a radiation field:

H = H0 +HI

= (Hspin +HHO) +Hfield

= ℏωhf σ̂z + ℏωtr(a
†a+

1

2
)− µ⃗E · E⃗.

Here, ωhf is the hyperfine splitting, σ̂z is the Pauli-Z operator, ωtr is the trap secular frequency, a

and a† are the harmonic oscillator raising and lower operators, and µ⃗E is the electric dipole opera-

tor. We can assume a laser field E⃗ = E0x̂ cos(kz − ωLt + ϕ) that is x̂-polarized and propagating

in ẑ. This field has amplitude E0, wavevector k = 2π/λ, frequency ωL, and phase ϕ. From now

on, we set ℏ = 1.

For a microwave field, we can write an analogous interaction term HI = −µxB0 cos(kz −

wrf t + ϕ), where µx is the x-component of the magnetic moment, ωrf is the radiation frequency,

B0 is the amplitude of radiation, and ϕ is a phase. Following [50], the time evolution of a resonant

1If anything in this section reads too similarly to the Mølmer-Sørensen Wikipedia page, it’s because I’m using this
document to write that page.
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microwave field (i.e., any microwave operation described in this text) is given by

Ψ(t) =

 cos ΩR

2
t −ieiϕ sin ΩR

2
t

−ie−iϕ sin ΩR

2
t cos ΩR

2
t

Ψ(0) (2.24)

with Rabi frequency ΩR ≡ −µBB/4.

Rotations about the Bloch sphere are denoted by R(θ, ϕ) where θ = ΩRt is the rotation angle

and rotation axis is determined by ϕ. For the first rotation, this axis can be chosen arbitrarily so

long as it is kept track of, and we can assume ϕ = 0 which happens to correspond to the R−x(t)

rotation operator. Notable times in the evolution are the π-time, which completes a full population

transfer between |0⟩ and |1⟩, and the π/2-time, which creates an equal superposition between |0⟩

and |1⟩. For example, an ion initialized to |0⟩ rotating about the y-axis will evolve as

Ry(π) |0⟩ = |1⟩ ; Ry(π/2) |0⟩ =
1√
2
(|0⟩+ |1⟩). (2.25)

For two-photon stimulated Raman transitions as in Figure 2.9, the interaction term of the

Hamiltonian becomes −
∑

i µ⃗E,i · E⃗i, for i = {1, 2} and E⃗i = Eiϵ̂i cos(k⃗i · r⃗ − ωLi
t + ϕi).

Following [47] and [50], the excited state |e⟩ can be adiabatically eliminated and a rotating wave

approximation performed to obtain an interaction Hamiltonian analogous to a two-level system

HI = −|g|2

2∆
I −

Ωeff

2
(σ− + σ+)(e

i(∆k·r⃗−(ωL0−ωL1)t+∆ϕ) + h.c.). (2.26)

Here, we have defined the Raman beam wavevector difference ∆k = k⃗L0 − k⃗L1, frequency dif-

ference ωL0 − ωL1, phase difference ∆ϕ = ϕL0 − ϕL1, and we have introduced Pauli operators

σ± = σx ± iσy. The − |g|2

2∆
term is the two-photon A.C. Stark shift, which is eliminated experimen-

tally by tuning the Raman beatnote to compensate for the shift. The single photon Rabi frequencies

for each beam (g0 = g1 ≡ g) are proportional to beam intensity and define the effective two photon

Rabi frequency Ω ≡ Ωeffe
i∆ϕ = |g|2/2∆.

Now we detune the the frequency difference ωL0 − ωL1 between lasers by δ from the qubit
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frequency ωhf , and absorb ∆ϕ into the effective Rabi frequency Ωeff ≡ Ωeffe
i∆ϕ. In our experi-

ments, ∆k is aligned along the z axis of the trap, so as to only couple to the axial modes of motion,

and Raman beam polarizations are aligned parallel to a quantization axis defined by a vertical

magnetic field. Finally, it is useful to transform to the interaction picture, where H → U †HIU for

U = e−iH0t/ℏ. Then

HI =
Ωeff

2
e−i[η(ae

−iwtrt+a
†
e
iwtrt)−δt+∆ϕ]σ− −

Ωeff

2
ei[η(ae

−iwtrt+a
†
e
iwtrt)−δt+∆ϕ]σ+, (2.27)

where we have used ∆kz = η(ae−iωtrt + a†eiωtrt) at trap frequency ωtr. The spread of the wave-

function in the ẑ-direction is z = z0(ae
−iωtrt+a†eiωtrt), and the Lamb-Dicke parameter η = ∆kz0

parameterizes the size of the motional ground state wavepacket of the ion z0 = (ℏ/2Mωtr)
1/2

compared to radiation wavelength λ. We will often mention being in the ‘Lamb-Dicke regime’,

for which η(2n+ 1) ≪ 1 and z0 is confined to a region much smaller than the laser wavelength.

Within the Lamb-Dicke regime, we can make the approximation e−iη(e
iωtrta

†
+e

−iωtrta) ≈ 1 −

iη(eiωtrta† + e−iωtrta). Doing so splits our Hamiltonian into three parts which correspond to the

carrier, red sideband (RSB), and blue sideband (BSB) transitions:

Heff =
Ω

2
σ−(e

iδt − iηei(δ+ωtr)ta† − iηei(δ−ωtr)ta) + h.c. (2.28)

Now we examine each piece, relying again on the rotating wave approximation to neglect fast-

oscillating terms. Illustrations of the carrier, RSB, and BSB transitions are shown in Figure 2.10.

• Carrier Transition: δ = 0

Here, |ωtr| ≫ δ, so we keep only the first term of Equation 2.28. Then

Hcarrier =
Ω

2
(σ− + σ+). (2.29)

The carrier transition alters the spin state of the ion without affecting the motional state, and
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Figure 2.10: Stimulated Raman transitions at three critical laser detunings are shown, with spin
states |0⟩ and |1⟩ depicted as harmonic oscillators with levels n − 1, n, and n + 1. Left: The
resonant carrier transition (δ = 0) facilitates |0, n⟩ → |1, n⟩. Center: The red-detuned ‘red
sideband‘ transition (δ = −ωtr) facilitates |0, n⟩ → |1, n− 1⟩. Right: The blue-detuned ‘blue
sideband’ transition (δ = +ωtr) facilitates |0, n⟩ → |1, n+ 1⟩

.

can be written

Hcarrier =
Ω

2
σϕ, (2.30)

where σϕ = cos (∆ϕ)σx + sin (∆ϕ)σy. Then the time evolution operator is given by

U(t) = e−iHt = e−iθσϕ , (2.31)

which is a Bloch sphere rotation for θ = Ωt/2 and rotation axis set by ϕ. During a carrier

transition, an ion initialized in |0⟩ evolves as

U(t) |0⟩ = cos θ |0⟩+ iei(∆ϕ) sin θ |1⟩ . (2.32)
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• Red Sideband Transition: δ = −ωtr

For Rabi oscillations near the red sideband, |δ + ωtr| ≪ |δ|, |δ − ωtr| so we keep only the

second term of Equation 2.28.

HRSB = −iη
Ω

2
(a†σ−)e

i(δ+ωtr)t + h.c. (2.33)

The RSB transition can be thought of as an ‘exchange’ of motion for spin. For an ion with

phonon occupation number n, an RSB π-pulse will take |0, n⟩ → |1, n− 1⟩ with oscillation

frequency ΩRSB = ηΩ
√
n. The red sideband transition is used in conjunction with optical

pumping to cool the ion to near the ground state, by performing a red sideband π-pulse

|0, n⟩ → |1, n− 1⟩, optically pumping back to |0⟩, and repeating for many iterations. An in-

depth description of the sideband cooling (SBC) process is given in Chapter 5; we generally

cool using the ‘fixed pulsed’ SBC method with both 1st and 2nd order cooling sequences.

• Blue Sideband Transition: δ = +ωtr

For Rabi oscillations near the blue sideband, |δ − ωtr| ≪ |δ|, |δ + ωtr| so we keep only the

third term of Equation 2.28.

HBSB = −iη
Ω

2
(aσ−)e

i(δ−ωtr)t + h.c. (2.34)

The BSB transition is also a spin-motion exchange. For an ion with phonon occupation

number n, a BSB π-pulse will take |0, n⟩ → |1, n+ 1⟩ with oscillation frequency ΩBSB =

ηΩ
√
n+ 1.
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2.3.2 Entanglement Creation

When Cirac and Zoller identified trapped ions as a quantum computing platform, they proposed a

procedure for implementing a CNOT gate by coupling ions through their collective motion [13].

However, this scheme requires the trapped ion system to be restricted to its joint motional ground

state, which is difficult to achieve experimentally. Today, a more widely used entanglement gate in

ion traps is the Mølmer-Sørensen (MS) gate [51, 52, 53] which produces an Ising-like interaction

Hamiltonian using a bichromatic laser field. Mølmer and Sørensen identified two regimes in which

this is possible:

1. The weak-field (slow gate) regime, in which single-photon absorption is suppressed and

two-photon processes destructively interfere in a way that makes internal state dynamics

insensitive to phonon number

2. The strong-field (fast gate) regime, in which individual ions are coherently excited such that

motion and spin are highly entangled during the gate and deterministically removed toward

the end of the interaction

In both regimes, a red sideband and blue sideband interaction are applied simultaneously to

each ion, with the red and blue tones symmetrically detuned by δ′ from the relevant motional mode.

Then the laser detunings are then δr,b = ±(ωtr + δ′), resulting in Raman beatnote frequencies

ωR = ωhf − ωtr − δ′ (2.35)

ωB = ωhf + ωtr + δ′. (2.36)

In this thesis, only slow gates were attempted experimentally, and so we focus on the weak-field

regime, for which ηΩ ≪ |ωtr − δ′|.

If we consider two ions, each illuminated by lasers with the above detunings, the only energy

conserving transitions are between |00⟩ ↔ |11⟩ and |01⟩ ↔ |10⟩. An intuitive way to think about

the Mølmer-Sørensen gate in the weak-field regime is to consider the allowed transition pathways
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between |00⟩ and |11⟩, as shown in Figure 2.11 for two ions. In this regime, we set δ′ large enough

that intermediate states with phonon number n± 1 are negligibly populated and enter the scheme

only virtually. Here we also assume that the laser detuning is near center-of-mass (COM) mode

(ωtr), thus excluding other modes from the analysis. A different mode may be used so long as each

ion participates in the mode with equal amplitude.

Then there are four possible transition pathways to consider:

|00, n⟩ ↔ |01, n+ 1⟩ , |01, n+ 1⟩ ↔ |11, n⟩

|00, n⟩ ↔ |10, n+ 1⟩ , |10, n+ 1⟩ ↔ |11, n⟩

|00, n⟩ ↔ |01, n− 1⟩ , |01, n− 1⟩ ↔ |11, n⟩

|00, n⟩ ↔ |10, n− 1⟩ , |10, n− 1⟩ ↔ |11, n⟩

Figure 2.11: The level diagram for a 2-ion MS interaction is shown. Red and blue sidebands de-
tuned from the COM motional mode create four possible pathways that couple |00, n⟩ and |11, n⟩.
The four pathways experience partial destructive interference such that any n-dependence cancels.
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Following [51], second order perturbation theory can be used to determine the effective Rabi

frequency Ω̃ for the |00, n⟩ ↔ |11, n⟩ transition via intermediate states m:

Ω̃ = 2
∑
m

⟨11, n|Hint |m⟩ ⟨m|Hint |00, n⟩
E00,n + ℏωR,B − Em

. (2.37)

The pathways involving intermediate states with n+1 quanta yield (n+1)Ω2η2/4(δ−ωtr), while

the pathways involving intermediate states with n− 1 quanta yield −nΩ2η2/4(δ − ωtr). Summing

terms, the effective Rabi frequency

Ω̃ =
(Ωη)2

δ′
, (2.38)

is found to be independent of phonon number, due to destructive interference between pathways.

Four similar pathways can be identified between |01, n⟩ and |10, n⟩, resulting in the overall state

evolution

|00⟩ → cos(
Ω̃t

2
) |00⟩+ i sin(

Ω̃t

2
) |11⟩

|11⟩ → cos(
Ω̃t

2
) |11⟩+ i sin(

Ω̃t

2
) |00⟩

|01⟩ → cos(
Ω̃t

2
) |01⟩ − i sin(

Ω̃t

2
) |10⟩

|10⟩ → cos(
Ω̃t

2
) |10⟩ − i sin(

Ω̃t

2
) |01⟩

Thus, the MS interaction creates a sinusoidal oscillation between |00⟩ ↔ |11⟩ or |01⟩ ↔ |10⟩, with

maximally entangled states created at time t = π/(2|Ω̃|). This is the same evolution as the Ising

Hamiltonian

HIsing = J1,2σ
1
xσ

2
x (2.39)

with effective Ising coupling J1,2 = (ηΩ)2/δ′ between ions 1 and 2. To reconcile this section with
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the following section, it is good to note that inclusion of off-resonant coupling between the two

sidebands modifies the Ising coupling

J1,2 →
(ηΩ)2ω

µ2 − ω2 (2.40)

for µ ≡ δB = −δR.

Another way of thinking about the MS gate is by writing down a general Hamiltonian and

evolution operator using Equation 2.33 and Equation 2.34. The red and blue tones will have the

effective Rabi frequencies ΩR = ΩeiϕR and ΩB = ΩeiϕB , respectively, and so we can write the

applied red and blue sideband Hamiltonians as

HR = iη
ΩR

2
σ−a

†eiδRt + h.c. (2.41)

HB = iη
ΩB

2
σ−ae

iδBt + h.c. (2.42)

Now we will sum over j ions, and also consider all k motional modes with eigenvectors bk and

eigenfrequencies ωk as described in Section 2.2.3. Writing the detuning from each motional mode

as µk ≡ µ− ωk, we arrive at the MS interaction Hamiltonian

Hint = i
∑
j,k

ηj,k
Ωj

2
σ−,j[ake

−i(µkt−ϕR) + a†ke
i(µkt+ϕB)] + h.c. (2.43)

where ηj,k = ∆k
√

ℏ/(2Mωk)b
k
j .

Now we define spin and motional phases

ϕs ≡
ϕB + ϕR

2
, ϕm ≡ ϕB − ϕR

2
. (2.44)
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such that the Hamiltonian can be separated into its spin and motion components:

Hint = i
∑
j,k

ηj,k
Ωj

2
[ei(µkt+ϕB)σ−,jak − e−(µkt+ϕB)σ+,ja

†
k + e−i(µkt+ϕR)σ−,ja

†
k − ei(µkt−ϕR)σ+,jak]

= i
∑
j,k

ηj,k
Ωj

2
[(σ−,je

iϕs − σ+,je
−iϕs)(ake

iµkteiϕm + a†ke
−iµkte−iϕm)]

≡ i
∑
j,k

ηj,k
Ωj

2
[σ̂j ⊗ Âk(t)]

where we have now defined the spin operator σ̂ and displacement operator Â(t).

The time evolution operator U(t) is then obtained through the Magnus expansion

U(t) = e
∑∞

l=1 Ml(t) (2.45)

where the first two Ml(t) are

M1(t) = − i

ℏ

∫ t

0

Hint(t1)dt1

M2(t) =
1

2
(− i

ℏ
)2
∫ t

0

∫ t1

0

[Hint(t1), Hint(t2)]dt2dt1

and higher order terms vanish for the MS Hamiltonian since [M2(t1), Hint(t2)] = 0.

The first order term is

M1(t) =
∑
j,k

σ̂j[αj,k(t)ak + α∗
j,k(t)a

†
k], (2.46)

where

αj,k(t) = ηj,k(Ωj/2µk)e
iµkt/2 sin(µkt/2)e

iϕm (2.47)

describes the displacement of the kth motional mode through phase space. In the weak field

regime, where ηΩ ≪ µ, this term can be neglected, as the phase space trajectory consists of very

small, fast loops about the origin. In the strong-field regime, care must be taken to end the gate at a
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time when all motional modes have returned to the origin in phase space (α = 0 −→ µktgate = 2π,

for each mode k).

The second order term is

M2(t) = i
∑
i,j,k
i<j

σ̂iσ̂j

ηi,kηj,kΩiΩj

2µk

(µkt− sin(µkt)) (2.48)

over ion pairs {i, j}. In the strong-field regime, where µktgate = 2π, this yields the time evolution

operator

Ufast(tgate) = exp[i
π

2

∑
i,j,k
i<j

ηi,kηj,kΩiΩj

µ2
k

σ̂iσ̂j], (2.49)

and if we set the phases of the lasers such that ϕR = 0 and ϕB = π, then σ̂ → −σx.

In the weak-field regime, this is not quite the end of the story. We relied on the rotating wave

approximation to get the intial red and blue sideband Hamiltonians, which is only a good approxi-

mation if the Raman beatnote predominately excites high-frequency modes. When counter-rotating

terms are re-introduced, a linear term appears that dominates at long times, and the effective time

evolution operator becomes

Uslow(t) ≈ exp[i
∑
i,j,k
i<j

(σ̂iσ̂j)
ηi,kηj,kΩiΩj

µ2 − ω2
k

ωkt], (2.50)

which is equivalent to that of an Ising Hamiltonian

Heff ≈
∑
i<j

Jijσ̂iσ̂j, (2.51)

with couplings between spins i and j given by

Jij ≈ ΩiΩj

∑
k

ηi,kηj,k

µ2 − ω2
k

ωk. (2.52)

The Jij coupling follows a power law Jij ≈ J0
|i−j|α , where J0 is the nearest-neighbor coupling and

33



0 < α < 3. We tune α experimentally by adjusting µ.
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CHAPTER 3

EXPERIMENTAL IMPLEMENTATION

3.1 Section Overview

This section will discuss our lab’s experimental implementation of the atomic physics techniques

detailed in Chapter 2. In Section 3.2, I will discuss the Paul trap itself. This section will give a

brief overview of each of the two home-built Paul traps relevant for the experiments detailed in

this thesis, as well a description of the vacuum chamber and voltage control systems they share.

In Section 3.3, I will describe the laser systems required to produce the optical frequencies

mentioned in Chapter 2. This includes two continuous-wave Moglabs diode lasers at 399 nm

(photionization) and 935 nm (repump from 2D3/2 state), a frequency-doubled Titanium Sapphire

(Ti:Saph) laser at 369 nm (2S1/2 →2 P1/2 cooling, detection, and state initialization), and a 355

nm COHERENT pulsed laser (stimulated Raman transitions), as well as a Helium Neon (HeNe)

laser used for frequency calibration of the other lasers.

Section 3.4 describes the experimental realization of the 171Yb+ qubit as described as Chapter

2, giving a discussion of beam pathways, polarization, geometries, power, etc for Doppler cooling,

optical pumping, detection, and coherent operations. I will also discuss the creation of the imaging

system used for state readout. The experimental setup and calibrations that must be performed

before an ion can be trapped and manipulated are described in this section.

3.2 The Paul Trap

An ion trap’s “house” is an ultra-high vacuum (UHV) chamber, built with standard ConFlat com-

ponents. A UHV environment is essential, as collisions with background will heat ions and/or

destroy spin states. By baking the chamber and using a scroll pump, turbo pump, and ion pump we

can reach pressures below 10−11 Torr, where the room temperature Langevin collision rate is ap-
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proximately 1 collision per ion per 30 minutes. Cleaning, assembling, baking, and pumping down

the vacuum chamber is a crucial process, a full description of which can be found in Yuanheng

Xie’s thesis. We currently have two vacuum chambers available for the main experiment- one in

use, and one as backup. In a pinch, we can do the majority of the pump down and baking process

for a trap in a separate location, and then move it to the laser apparatus.

A front and back view of the vacuum chamber is shown in Figure 3.1, where feedthroughs for

the RF voltage, DC voltage, and oven current are labeled. Also depicted are three magnetic field

coils. The top coil, centered directly over the trap to create a field along ẑ, is the only coil used

during quantum simulation experiments. A 5 G field is created by running a 1.1A through the

coil, shifting our Zeeman levels by 6 MHz. The front and side coils allow control of the magnetic

field along all three axes, which is required for the Ramsey experiments described in Section 3.4.4.

There are three viewports for optical access. The front viewport, which aligns with the imaging

system, is anti-reflection coated for UV light.

Two home-built Paul traps were used during my time in the Richerme lab: the “rod trap” and

the “blade trap”. The rod trap was designed as a simple ‘test’ trap to verify that we could trap

ions before implementing the more complex blade-style trap with an optimized design for 2D

lattices. However, before it retired, the rod trap was used for a sideband cooling study (Chapter 5),

a radiation susceptibility study (Chapter 6), and a characterization of radial-2D crystals (Chapter

7). At the time of writing, the main experiment uses the blade trap, while the rod trap resides in

the backup vacuum chamber on a different optics table.

3.2.1 The Rod Trap

The rod trap is pictured in Figure 3.2. It consists of four stainless steel rods with two “needle”

endcaps along the ẑ (axial) direction. An oscillating RF voltage V0 is applied to two opposing rods

(the other two are grounded), creating a quadrapole potential in the xy (radial) plane, while a static

DC voltage U0 is applied to the two endcaps. Radial and axial trap dimensions are r0 = 460 µm

and z0 = 335 µm, respectively, and we drive the RF rods with Ωt = 2π × 21 MHz. The trap
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Figure 3.1: Front (top) and back (bottom) view of the trap chamber.
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Figure 3.2: Solidworks model of the (a) full view, (b) front view, and (c) side view of the four-
rod linear Paul trap, with designated trap coordinate axes (lower left) and dimensional parameters
(red).

geometric factor is determined through frequency measurements to be κ ≃ 0.12. In this trap, the

radial plane is perpendicular to the imaging plane, which does not allow for site-resolved imaging

of ion lattices. This is the main reason we switched to a blade-style trap.

3.2.2 The Blade Trap

The blade trap was specifically designed to allow appropriate (and experimentally reasonable) trap

dimensions, voltages, and frequencies that ensure we can reach the radial-2D regime ωz/ωr >

(2.264N)1/4 for large numbers of ions. This is most easily accomplished when ωz is large, which
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requires large U0 and/or small z0. Both of these conditions have a deconfining effect in the radial

direction, and so to counter this effect, V0 must also be moderately large while keeping r0 small.

A large trap drive frequency Ωt is desirable to keep the Matheiu q parameter (and thus micromo-

tion amplitude) small as well. A segmented-blade design was chosen for this trap due to three

advantageous properties:

1. Open endcaps allow imaging perpendicular to the 2D ion plane.

2. Trap dimensions r0 and z0 can be made small to avoid unreasonably high V0 and U0.

3. Blades can be designed to avoid compromising the numerical aperture (NA) of the imaging

optics.

An image of the blade trap is shown in Figure 3.3. Four tungsten blades are mounted on

insulating Macor pieces within a stainless steel frame. Tungsten was chosen for its strength and

low resistivity, which limits blade heating and any associated vacuum pressure increases when

large RF voltage is applied. Two opposing blades are driven with RF, and the other set of opposing

blades are the DC blades, which have three segments: two endcaps and one central electrode.

Each DC segment is 300 µm long and separated by a 50 µm gap. The RF blades are continuous

and are the same total length as the DC blades (1 mm). All blades (including RF blades) can

be biased to allow to translation along all three principle axes. Radial and axial trap dimensions

are given by r0 = 230 µm and z0 = 100 µm respectively, and RF blades are driven with Ωt =

2π × 27.51 MHz. Compensation electrodes are mounted above and below the trap to provide

additional voltage adjustment. On-chip capacitors (800 pF) on each DC segment provide filtering

of RF pickup. Further description and characterization of the blade trap system is provided in

Chapter 8. For the remainder of Chapter 3 and Chapter 4, I will assume the blade trap is in place.
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Figure 3.3: (a) A photograph of the blade trap. Four tungsten blades are mounted on insulating
Macor pieces within a stainless steel frame. (b) Opposing blades are driven with RF (set 1) and
DC (set 2). Compensation electrodes placed above and below the trap offer additional voltage
flexibility. (c) DC blades are segmented, each segment being 300 µm long and separated by a 50
µm gap. RF blades are continuous and the same total length as the DC blades. On-chip capacitors
(800 pF) on each DC segment provide filtering of RF pickup.

3.2.3 Trap Voltages

3.2.3 Applied RF Voltage

Rf voltage is coupled into the trap via a single-coil helical resonator (rf can), the design of which

closely follows [54]. At times, we have used a two-coil resonator (described in Chapter 8), but

we found that the 2-coil design facilitates anomalous sidebands in the motional mode spectrum of

our ions. The resonator consists of a copper shield and two inner coils which couple inductively.

The main coil couples RF to the trap blades via vacuum feedthroughs. The resonator shield is

grounded through the vacuum chamber and optics table, which are connected by a copper cable to

earth ground. Bias tee ports allow for DC voltage compensation along the the RF blade axis. Rf

originates at an HP8648A signal generator, set to the the resonance frequency of the can. The initial
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RF signal passes through an amplifier, low pass filter, and a directional coupler which samples the

reflection signal of the resonator to be monitored on an oscilloscope.

The peak output voltage of the resonator is

Vout = (L/C)1/4
√
2PinQ (3.1)

where Pin is the input power, Q is the resonator Q-factor, L is the coil inductance, and C is the

trap capacitance. For resonance frequency ω0 and FWHM ∆ω,

Q =
ω0

∆ω
. (3.2)

Typically, Q > 100 and is best optimized by using a vector network analyzer (VNA) to find the

resonance frequency of the can, and adjusting the resonator geometry to decrease reflection. If

the resonator is already well-functioning, RF frequency and resonator geometry can be optimized

without the VNA by minimizing the reflection signal on an oscilloscope.

3.2.3 Applied DC Voltages

DC voltage is provided to all trap blades (6 DC segments + 2 RF blades), as well as two compen-

sation rods above and below the trap used to mitigate stray fields. With DC voltage control along

each trap axis, we have full control over the trapping potential. With a 2-coil resonator, RF blades

can be biased individually, but with the single coil resonator, both blades receive the same bias

voltage. Matsusada R4G250-.3 high-voltage (HV) power supplies provide DC voltage to the four

trap ‘endcaps’. HV supply output voltage is controlled using a 0-10V external signal, provided

through the Artiq control system described in Chapter 4. The RF blades and middle DC blade seg-

ments are directly controlled with Artiq DAC voltages, and compensation voltages on rods below

and above the trap are provided by a Rigol DP832 programmable power supply.

An adaptive box takes BNC inputs from all contributed DC voltages and connects them via D-

sub connector to an inductor array, which prevents RF pickup on the DC blades from traveling up
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the DC line. The inductor array connects via C-sub connector to a 9-pin vacuum feedthrough. Six

isolated pins provide voltage to the DC blades; the other three connect the power supply grounds

to earth via the trap frame and vacuum chamber. The Matsusada and Rigol supplies must be left

floating to avoid a ground loop.

3.3 Laser Systems

The critical optical frequencies from Chapter 2 are 399 nm (photionization), 369 nm (2S1/2 →
2P1/2 transition), 935 nm (repump), and 355 nm (coherent operations). Producing each of these

frequencies requires a well-maintained laser system.

3.3.1 CW Diode Lasers: 399 nm and 935 nm

Our continuous wave (CW) 398.9 nm ionization beam and 935 nm repump beam are produced by

external cavity diode (ECD) lasers from Moglabs. The lasers are machined from solid aluminum

blocks and contain semiconductor laser diodes with low reflectivity front facets (internal cavity)

and high reflectivity rear facets. The output beam from the front facet is collimated with a high-

NA lens and is incident on a diffraction grating, which is angled such that the first order reflection

is directed back into the laser diode. The diffraction grating and rear facet make up the external

cavity.

Coarse frequency adjustments can be made by adjusting the diffraction grating, temperature,

and diode injection current. Small frequency adjustments can be made by controlling the external

cavity length with a piezo-electric actuator. The ECD’s have diode laser controller (DCL) boxes

which control injection current, frequency, and temperature. A PID circuit reads a frequency error

signal derived from monitoring the laser on a wavelength meter (WLM) (HighFinesse WS Ultimate

10), and the PID output is sent to the diode laser controller (DLC) which adjusts the piezo-electric

actuator in order to lock the frequency. Currently the 935 nm ECD is locked using this method,

and the 399 nm laser is free-running as it is only used for short periods during the loading process.
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3.3.2 369 nm Frequency-Doubled Ti:Saph

Our 369 nm 2S1/2 → 2P1/2 transition is bridged using a frequency-doubled M-Squared Ti:Saph

output, with the Ti:Saph pumped by a 532 nm Lighthouse Photonics Sprout. Each component of

this system is described below with its location noted in Figure 3.4:

• Sprout: The Lighthouse Photonics Sprout is a diode-pumped solid state laser providing a

532 nm CW ouput up to 10 W. This laser is a sealed system with a monolithic laserhead and

a power supply containing an integrated thermoelectrically cooled (TEC) chiller.

• PIK: The SolsTiS Pump Integration Kit (PIK) is a telescope that routes and steers the pump

beam from the pump to the SolsTiS and can be manually aligned.

• SolsTiS-SRX: The PIK aligns the Sprout output into the SolsTiS, where it pumps a Ti:Saph

crystal and subsequently outputs frequency-locked 740 nm light. Laser oscillation within a

Ti:Saph cavity occurs on a number of well-defined, equally spaced cavity frequencies, with

the number of cavity modes restricted by optical elements. An optical diode and bow-tie ring

cavity configuration within the SolsTis restricts the number of cavity modes by forcing uni-

directional light, enabling the SolsTis to oscillate on a single frequency. To tune the output

wavelength, a motorized intracavity birefringent filter (BRF) is used, which introduces a

wavelength-dependent loss. Finally, for a finer frequency selection, an etalon introduces a

sharper spectral loss function than the BRF. Final output frequency is tuned by electronically

adjusting the etalon spacing and locking it to the nearest cavity longitudinal mode. The

SolsTiS comes with an ICE-Bloc control module, which connects via Ethernet and includes

a software UI that allows frequency tuning, locking, and scanning. The SolsTiS must be

cooled when pumped with > 5 W; we do this with a Thermotek recirculating chiller running

at 20 C.

• Reference Cavity: A high stability reference cavity following the SolsTiS provides finer

frequency control by locking the SolsTiS output frequency to a reference cavity fringe using
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a resonator piezo device. The reference cavity also includes a 740 pickoff which is monitored

by the WLM. A frequency error signal is processed by a PID box, the output of which is sent

to the ICE-Bloc for frequency locking.

• Telescope: A telescope after the reference cavity aligns the SolsTiS output into a frequency-

doubling cavity.

• ECD-X: An external cavity doubler (ECD-X) resonantly enhances CW input light and fre-

quency doubles 740 nm light using a nonlinear crystal. Control electronics lock the maxi-

mum intensity within the cavity, by scanning the cavity length via piezo modulation. With

10 W power at the Sprout, the final output should be 1 W of 369 nm light. The frequency-

doubler is also controlled by the ICE-Bloc and the M-Squared software UI. The frequency-

doubling cavity is a sealed unit which needs to be opened occasionally for careful alignment,

following instructions in the ECD-X manual.

3.3.3 355 nm COHERENT Paladin

Stimulated Raman transitions are performed with a 355 nm COHERENT Paladin high power,

mode-locked UV laser with picosecond pulses at a 80.935 MHz repetition rate. The pump mod-

ule of the system is 1064 nm output from a laser diode, powered by an oscillator current. Two

Vanadate crystals pump and amplify IR light, and two more crystal stages generate second and

third harmonic frequencies at 532 nm and 355 nm. A saturable Bragg reflector is used for mode

locking. The Paladin can provide up to 8 W of light, and is cooled by a Termotek AG chiller. It is

an industrial laser that comes in a closed box with no access to the cavity; all laser parameters are

controlled through the Paladin Optimization Software GUI.

3.3.4 HeNe Frequency Reference

A stabilized Helium Neon (HeNe) Laser centered at 632.992 nm serves as a frequency reference.

The 935 nm, 399 nm, and 740 nm laser frequencies are measured relative to the HeNe and cali-
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brated regularly by the WLM.

3.4 Experimental 171Yb+ Qubit Realization

In this section, we discuss experimental implementation of the laser-based atomic physics tech-

niques described in Section 2.3.

3.4.1 Near-Resonance Lasers

An optical pathway diagram for the near-resonant lasers is shown in Figure 3.4. A ∼ 10 mW 740

nm pickoff from the Ti:Saph is sent to the wavemeter (WLM) for locking, and the 369 nm ECD

output is split into four beams (Doppler, Detection, Protection, and Optical Pumping). Relative

beam powers are controlled by half wave plates (HWP) and polarizing beamsplitter (PBS) cubes.

Beams are frequency-shifted by varying amounts via electro-optical modulators (EOMs) and/or

acousto-optical modulators (AOMs), then coupled to optical fibers. The 369 nm output from the

ECD is locked to a frequency 430 MHz below the 2S1/2 |f = 1,m = 0⟩ ↔ 2P1/2 |f = 0,m = 0⟩

transition.

Each 396 nm pathway contains an AOM (Brimrose CQF-420-100-369) which upshifts the

beam to near resonance, powered with RF generated by Artiq and amplified to 2W. AOM efficiency

is dependent on beam polarization, which is controlled via a HWP placed before each AOM. Beams

are focused into the AOMs with 100 mm telescoping lenses. The Doppler and Optical Pumping

boards also include a 14.7 GHz EOM (Qubig EO-WG14.7M2-VIS) and 2.1 GHz EOM (Qubig EO-

Yb171+), respectively. The frequency-shifted beams, along with the unshifted 0th order Doppler

beam (referred to as Protection+) are coupled via optical fiber to an array of fiberports near the

trap, from which the beams are recombined and focused on the ion.

The 935 nm and 399 nm beams are combined and focused on the ion along the same pathway,

and the 935 nm optical fiber is coupled through a 3.1 GHz fiber EOM (EOSpace Lithium Niobate).

The final lens before the trap is a 150 mm Best Form, which focuses a beam to a minimum waist

size
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Figure 3.4: Optical pathways of near-resonant lasers
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ωmin =
4λf

πD
∼ 100µm (3.3)

at the ion, where D is the diameter of the beam prior to the Best Form, λ is the laser wavelength,

and f is the focal length of the Best Form. We image beam profiles using a Guppy PRO F-503B as

illustrated in Figure 3.5. Beam waist diameters are measured by fitting the Guppy image intensity

profile to a Gaussian beam profile.

Figure 3.5: Intensity profiles of the 369nm, 399 nm, and 935 nm beams, as well as the combined
beam through the trap, are imaged on a Guppy camera.

Each beam pathway is described in more detail below:

• Doppler: An amplified HP8671B synthesizer powers an EOM with 0.95 W, creating 14.747811

GHz sidebands which allow both the f = 0 and f = 1 ground state manifolds to cool along

the 2S1/2 ↔2 P1/2 transition. An AOM upshifted by +420 MHz leaves us 10 MHz red-

detuned from resonance for optimal cooling of one ion. The 0th order (unshifted) beam

produced by the AOM is labeled ‘Protection+’ and is also sent to the trap, with its on/off

status controlled by an optical shutter. This beam helps to trap initially when ions are hot, or

to re-cool the crystal after a melting event. The Doppler beam must contain σ−, σ+, and π

polarized light; final beam polarization is optimized with a HWP before the fiberport. Large

polarization fluctuations induced by the EOM are negated by introducing a PBS between the

EOM and the AOM HWP.

• Detection: An AOM upshifted by 430 MHz leaves the detection beam perfectly resonant

with the 2S1/2, f = 1 ↔2 P1/2, f = 0 transition. This beam also must contain all polariza-

tion components, and is optimized with a HPW before the fiberport.
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• Protection: The protection beam is a far detuned cooling beam that helps with recrystal-

lization after collision events and improves cooling for 2D lattices. The Protection AOM is

upshifted by 330 MHz (100 MHz detuning) based on [55].

• Optical Pumping: An amplified HP8664A RF generator powers the 2.105 GHz EOM. The

2.1 GHz sidebands allow the 2S1/2, f = 1 manifold to couple to the 2P1/2, f = 1 manifold

which can decay to |0⟩ for state initialization. The optical pumping AOM is upshifted by 430

MHz so that the beams are on resonance with the 2S1/2, f = 1 ↔2 P1/2, f = 0, 1 transition.

• 399 and 935: The 399 nm and 935 nm beam pathways include isolators to prevent back-

reflection into the laser cavity. The majority of each beam is sent to the trap, controlled by

an optical shutter, and a small percentage of light is sampled by the WLM. Sidebands created

by a 3.1 GHz fiber EOM, powered by an HP 8648C RF generator, bridge the 2D3/2, f = 1

and 3[3/2]1/2 transition for repump.

• Beam Recombination: The 369 nm beams are aligned along the same pathway using 50-50

beamsplitters. The 399 nm and 935 nm beams are combined in series using dichroic mirrors,

and the beams are re-sized using a (50mm:125mm) telescope before they are focused into

the trap by a 150 mm Best Form lens. Alignment through the trap can be roughly verified

using a Celestron Portable HD microscope. The final beam enters the trap at a small angle

relative to the table to allow Doppler cooling along all three trap axes.

Frequency shifts, as well as beam powers at the final fiberport, are listed in Table 3.1. The 369

nm beam powers listed are optimized for one ion; powers increase as ion number increases and

average ion position shifts away from the beam center. Optimal powers are determined experimen-

tally by measuring the ion temperature, characteristic optical pumping time, and detection fidelity

as described in Chapter 4.
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Beam Frequency Shift Power (fiberport)
Detection +430 MHz 200 µW
Optical Pumping +430 MHz,+2.1 GHz 350 µW
Doppler +420 MHz,+14.7 GHz 100 µW
Protection +330 MHz 400 µW
Protection+ +0 MHz Max (varies)
935 Repump 3.1 GHz Max (11 mW)
399 Ionization N/A Max (1.5 mW)

Table 3.1: Frequency shifts and power at final fiberport for near-resonance lasers are given, set
optimally for one ion.

3.4.2 Loading Process

During ionization, a beam of neutral Yb is produced thermally and sprayed into the trap by resis-

tively heating one of two ovens (a natural abundance Yb oven and a 171Yb oven). In Figure 3.1, the

high power feedthrough to the 171Yb oven is visible while the feedthrough to the natural abundance

oven is obscured by a lens translation stage. The ovens are needles stuffed with pure Yb and are

mounted inside the chamber facing the trap, as shown in Figure 3.3.

Neutral Yb atoms moving at an average velocity vavg =
√

8kBT
πm

are then produced within

the trapping potential and met with ionization beams, which enter at a 45 degree angle to the ion

trajectory, resulting in frequency shift

fion = [1−
vavg cos

π
4

c
]fbeam. (3.4)

Here, ‘ionization beams’ refer to the 399 nm CW Moglabs diode laser which excites the 1S0 ↔1 P1

transition, as well the Doppler, Protection, and 355 nm Raman beams which are each capable of

completing the ionization process. Doppler, Protection, and the 935 nm repump are turned on

in conjunction with the 399 nm ionization beam, while the 355 nm beam is pulsed quickly and

for short durations. The high energy and intensity of the 355 nm beams ionize atoms far more

efficiently than Doppler and Protection; without the Raman beams aligned it can take a long time

to trap and may require a higher oven current. Loading with low current and 355 nm light is
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Figure 3.6: A ray diagram of the imaging system optical components is shown. Light is magnified
(x5) by a high-NA objective, focused by a Best Form through a 100 mm pinhole, and further
magnified (x8) by a doublet lens.

preferred to avoid coating the blades with neutral Yb, which can alter the trapping potential. Once

an atom is ionized, the Doppler and Protection beams cool its temperature to near the Doppler

limit.

3.4.3 Imaging System

Imaging systems optics, optimized by a Zemax simulation, are shown in Figure 3.6. The total

magnification is designed to be x40. Light from an ion point source is collimated by a 0.28 NA

from Special Optics, which results in a diffraction limited spot size

1

2
(
1.22λ

NA
) = 0.8 µm (3.5)

and x5 magnification. This image is focused through a 100 mm pinhole using a Best Form lens,

then further magnified and projected onto a detection device using a doublet (x8 magnification).

The objective, Best Form, pinhole, and doublet are held by Thorlabs cage plates with kinematic

mounts for open access and fine individual alignment.

After the doublet, light passes through two spectral filters and enters a dark box sealed to

prevent excess background. Inside the dark box, a flip mirror controlled by a TTL pulse sends light

to either a photomultiplier tube located within the box, or an Andor iXon 897 EMCCD camera

connected to the box by optically sealed lens tubing. Distance between optical components are

listed in Table 3.2.
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Optics Separation
Objective : Best Form 25 mm
Best Form : Pinhole 150 mm
Pinhole : Doublet 110 mm
Doublet : EMCCD/PMT 860 mm

Table 3.2: Separation between imaging system optical components

3.4.3 Installation Procedure

For any future student who may need to switch out the trap, I’ve included a brief description of

objective alignment. To align the objective, illuminate the trap with a flashlight and turn off the

room light, adjusting the translation stage such that a centered image of the trap silhouette can

be seen on an index card about 150 mm from the trap. When the image is centered, attach the

translation stage to the table, making sure that it is reasonably close to the trap window. Attach the

rest of the optics, minus the pinhole, and image the four trap blades (or the 2 DC endcaps, for the

rod trap) by slighting misaligning the beams to create scattering from the blades. The trap center

in the xy plane will be the average value of the measured blade locations. A roughly accurate

z-position can be found by moving the objective toward the chamber by half the trap length.

3.4.4 Coherent Operations

Raman beam alignment and occasional coherence measurements require Rabi oscillations via a

microwave horn. The horn is located by the front vacuum chamber window and faces the trap at

a 45 degree angle. RF is sent to the horn via a HP 8672A frequency synthesizer set to the qubit

frequency ωhf , controlled by an RF switch. The horn receives 29 dBm of power when on, with

∼ 30 dB isolation. It is important to keep the horn off when doing anything other than alignment or

coherence measurements, as even with high isolation, leakage from the horn can create confusing

signals.

With the exception of beam alignment and occasional coherence measurements, all coherent

operations are performed via stimulated Raman transitions with the 355 nm COHERENT Paladin
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pulsed laser pictured in Figure 3.7b. This section describes the optical pathway and frequency lock

for the Paladin, as well as instructions for aligning the Raman beams. The 355 nm beam path is

illustrated in Figure 3.7, and the individual components are described below:

• First Polarizer and Beamsplitter: Laser output is sampled by a fast photodiode, which is

used in the frequency locking circuit described in Section 3.4.4.

• Second Polarizer and PBS: This combination determines how much power is sent to the

trap and deflects the rest to a beam dump. With the polarizer set to transmit max power

through the PBS, each arm should be sending 1 W to the trap. If 1 W per arm is unmanage-

able, AOM efficiency may be low, or the laser may need to be re-optimized or moved to a

new spot on the crystal.

• 50-50 Beamsplitter: Sends equal power to each arm.

• AOMs: Frequency, phase and amplitude of Raman beams are controlled with 200 MHz

AOMs (Brimrose CQF-210-40-355). The inner arm is driven by a single-frequency AOM

and is used in the beatnote lock; the outer AOM is driven with multiple frequencies for MS

operations.

• Intermediate Focus: A telescope inserted after the AOMs has lenses mounted on translation

stages to provide finer control over beam alignment at the trap.

• QWP and HWP: A quarter wave plate (QWP) and half wave plate (HWP) provide full

polarization control. Assuming a vertical magnetic field, the two beam paths must have

horizontal polarization, which can be optimized by minimizing coupling to Zeeman levels

as described in Chapter 4.

• Delay Stage: Since the Paladin is a pulsed laser, pulses need to be in phase at the ion. A

delay stage increases the length of the inner arm to make it equivalent to the length of the

outer arm.
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Figure 3.7: (a) 355 beam path (b) Image of Coherent Paladin outputting 8W power

53



• Best Forms: Two 150 mm Best Form lenses focus the beam into the trap, with a final waist

diameter ∼ 100µm. The resultant wavevector ∆k⃗ = k⃗1 − k⃗2 is along the axial (transverse)

direction relative to the ion lattice.

3.4.4 Beatnote Lock

The frequency difference between the two Raman beams needs to be locked to the qubit frequency

ωhf . Each Raman beam generated by the Paladin has an optical frequency comb, with comb teeth

spaced evenly by the repetition rate νrep. We lock our single-frequency AOM to the 158th comb

tooth such that the beatnote at ωhf is generated by all comb teeth separated by 158νrep. Then the

ion will absorb a photon from the nth comb tooth of beam 1 and emit to the (n + 158)th comb

tooth of beam 2, making the transition between |0⟩ and |1⟩.

Schematics for the beatnote lock closely follow [56] and are shown in Figure 3.8. Light is

sampled by an Alphalas fast photodetector and passes through an amplifier and 11.7 − 12.8 GHz

bandpass filter to transmit the 158th comb tooth. The signal is then mixed with a ∼ 12.4 GHz

signal from an HP8672, and the 200 MHz beatnote between the comb tooth and HP8672 is sent

to a phase-locked loop (PLL). Within the PLL, an HP8640 is modulated via a PID controller to

output a signal phase locked with the beatnote. The output signal is monitored on an oscilloscope.

3.4.4 Raman Beam Alignment

To perform coherent operations with the Paladin, the two Raman beam path lengths must match to

less than 2.5 mm and overlap with the ion. First, we measure and adjust the length of both arms

to get a rough temporal alignment, and then adjust the final lens stage to center the beam through

the trap. Once an ion is trapped, we perform Ramsey experiments using the microwave horn

to optimize spatial alignment, and we perform Rabi oscillation experiments to finalize temporal

alignment.

• Ramsey Experiment: The experimental sequence for a Ramsey alignment experiment is

as follows: Doppler Cool → Optically Pump → π/2 microwave pulse → Delay → π/2
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Figure 3.8: We lock our single-frequency AOM to the 158th comb tooth of the optical frequency
comb in the inner Raman arm. Light is sampled by an Alphalas fast photodetector and passes
through an amplifier and 11.7 − 12.8 GHz bandpass filter to transmit the 158th comb tooth. The
signal is then mixed with a ∼ 12.4 GHz signal from an HP8672, and the 200 MHz beatnote
between the comb tooth and HP8672 is sent to a phase-locked loop (PLL). Within the PLL, an
HP8640 is modulated via a PID controller to output a signal phase locked with the beatnote.The
output signal is monitored on an oscilloscope.
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microwave pulse → Detect → Increase Delay Time → Repeat.

If the horn frequency is perfectly on resonance with ωhf , every iteration should result in a

perfect π-pulse regardless of delay time. If the horn frequency is detuned by δ from the

atomic transition, the detected bright state population will oscillate with frequency δ. Turn-

ing on a Raman beam during the delay will create a two-photon Stark shift that scales with

laser intensity. Higher beam intensities (better alignment) will shift the hyperfine levels by

larger amounts, creating larger imperfections in the π/2 pulses, and therefore the bright state

population will oscillate with a higher frequency.

First, an initial Ramsey experiment with no laser light during the delay time is used to mea-

sure a control frequency. Then a Ramsey experiment is run with a 355 nm Raman beam

pulsed during the delay, and the frequency difference between the two experiment Ramsey

oscillations is measured. Raman beam positioning is adjusted to maximize the frequency

difference.

• Rabi Oscillations: The experimental sequence for a Rabi oscillation is as follows: Doppler

Cool → Optically Pump → Raman Pulse of Time t → Detect → Increase Pulse Time →

Repeat.

If the Raman beatnote frequency is locked to the hyperfine transition frequency, and the pulse

timing between beams overlaps, then each timestep in the experimental sequence should

induce a carrier transition (Equation 2.29). Since the Rabi frequency ΩR scales linearly

with laser intensity (ΩR ∝
√
I1I2), we sample the π/2-time on the first oscillation of the

Rabi curve and adjust the delay stage and beam alignment until ΩR is maximized. Then we

remeasure the π/2-time and repeat until ΩR can no longer be increased.
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CHAPTER 4

EXPERIMENTAL SEQUENCING

4.1 Section Overview

Section 4.2 will give an overview of our experimental control system and how to do experimental

sequencing. It includes a description of how lab equipment is connected to and controlled by

modular Sinara hardware, and how control sequences are implemented and synchronized by Artiq

control software.

Section 4.3 will describe everything that went into trapping an ion for the first time. This

includes Doppler-free spectroscopy in order to verify transition lines, as well as troubleshooting

techniques such as imaging neutral Yb and using the 174Yb isotope for troubleshooting. Some tips

and tricks for what to do if you can’t find ions are here.

Section 4.4 discusses system calibration once 171Yb+ is trapped. It describes a daily protocol

which results in realizing a Mølmer-Sørensen gate with multiple ions.

4.2 Experiment Control

Our experimental control system uses Advanced Real-Time Infrastructure for Quantum physics

(ARTIQ), developed by M-Labs and the NIST Ion Storage Group [57]. ARTIQ is a control soft-

ware designed to be used with an FPGA-controlled modular ecosystem of devices known as Sinara

hardware. A chassis (the ‘Kasli crate’) containing an arbitrary combination of desired Sinara mod-

ules can be assembled and purchased through M-Labs. A central “core device” controls peripheral

devices and satellite crates using real-time in/out (RTIO) protocol, which synchronizes clocking

and enables nanosecond timing resolution across experimental devices.
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Figure 4.1: A rendering of the Richerme lab Sinara chassis. Individual modules are linked to color-
coded boxes containing their name, description, and a list of devices externally connected to that
board. The core device (Kasli), controls and synchronizes peripheral devices (Grabber, Sampler,
Urukul, Zotino, Phaser, and SMA-DIO) which all contribute to experimental sequencing.

4.2.1 Sinara Hardware

The Richerme lab Kasli crate is rendered in Figure 4.1, and a description of each module is pro-

vided below:

• Kasli: The core device, Kasli, is capable of controlling up to 12 Eurocard Extension Modules

(EEMs), and can act either as a central core device or as a satellite connected to the master

via DRTIO. The EEM peripherals are powered by Kasli via ribbon cables, using the EEM

Connector interface, and Kasli is connected to the experiment computer via Ethernet. We

use an external 10 MHz Rb clock as a frequency reference rather than Kasli’s internal 125

MHz clock, connected to Kasli’s clock distribution chip via SMA.

• Grabber: The camera grabber interfaces with the EMCCD via a CameraLink port, which

emits digitized pixel data from specified regions of interest (ROI’s) at high speeds. As of

now, the camera grabber seems limited in the number of ROI’s it can handle within an
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experiment timeframe, and we’ve continued to use Andor SOLIS software for acquisition

and image processing.

• SMA-DIO: Eight digital IO’s divided are into two banks of 4 channels. Each bank can be

set to either output or read TTL pulses. We use two output TTL lines from the top bank

to control RF switches for the microwave horn and the 200 MHz single-frequency Raman

AOM. An input line from the bottom bank reads PMT counts during detection sequences.

• Urukul: Urukul is a 4-channel 1 − 400+ MHz DDS-based RF synthesizer which offers

control over frequency, amplitude, and phase of generated RF signals. Our chassis contains

two Urukul boards, and 4 channels are used to control our ∼ 420 MHz Brimrose AOM’s.

• Sampler: The Sampler is an 8-channel, 1.5 MS/s data-acquisition device with 16-bit reso-

lution.

• Zotino: Zotino is a 32-channel, 16-bit DAC which outputs ±10 V with an update rate of

1MSPS. We use Zotino to control the output voltage of our HV power supplies, as well as

to directly control the voltage on the central DC electrodes and RF trap electrodes. Zotino

voltages also control the imaging system flip mirror and optical shutters for the 935 nm,

399nm, and Protection+ beams.

• Phaser: The Phaser is an 1.25 GS/s Arbitrary Waveform Generator (AWG) with integrated

RF upconversion. A 4-channel, 16-bit DAC drives an I/Q modulator and digital upconverter

(DUC). Four oscillators with frequency, amplitude, and phase control can be placed within a

20 MHz window relative to the DUC frequency, which can be shifted [-400, 400] MHz from

a [0.3, 4.8] GHz carrier. The Phaser is used to drive multiple tones on a 220 MHz AOM for

entanglement protocol.
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4.3 ARTIQ Software

ARTIQ experiment sequences are written in Python, and the program flow is split between code

that runs on the host computer and code executed on an embedded kernel in the core device FPGA.

Artiq language modules and core device modules that run on the kernel are Python extensions

which can be used with a strict subset of Python 3 (ARTIQ Python). Lab-specific packages

(‘Sub Artiq’) contain subroutines for experiments, specialized calculations, analysis, and other

utilities.

The Artiq ‘core device’ can run a piece of code (‘kernel’), which has access to specialized

timing logic. Anything that requires precise timing must be compiled and executed on the core

device rather than being interpreted and executed as regular Python code. ‘ARTIQ Master’ is

the central program in the management system which schedules and executes events. A direct

access memory (DMA) engine, which we typically program for sideband cooling, is also included

with the core device as a way of scheduling many fast events while avoiding underflow errors. It

preschedules events in FPGA memory and plays back the schedule out of the FPGA memory when

called by the user.

An Artiq experiment file is split into four sections as defined by the Artiq language environ-

ment:

• Build(): Imports devices using keys from a device database, and allows you to set arguments

to build the frontend of the experiment.

• Prepare(): The entry point for pre-computing data. Doing computations in prepare() rather

than run() enables more efficient scheduling across multiple experiments that share hard-

ware. In this section we could, for example, save input data, set datasets, calculate pulse

schedules, or estimate the experiment run time.

• Run(): Requires an @kernel decorator, and is the only section that can interact with hard-

ware. The Run() section is the body of the experiment and typically includes many Sub Artiq

routines such as Doppler cooling, detection, and optical pumping.
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• Analyze(): The entry point for analyzing results where we might, for example, plot or fit

experiment data.

Figure 4.2: The Artiq dashboard is a GUI for experiment control. A list of experiments is shown
in the Explorer panel on the right, and they are run from the central window. Applets for plotting
can broadcast datasets to give rapid feedback during experiments, and a log at the bottom shows
experiment scheduling and output.

Experiments are submitted through the ARTIQ dashboard, shown in Figure 4.2. Experiment

interfaces are opened in the central window, and a list of available experiments is shown in the

‘Explorer’ dock. Applets for plotting can broadcast datasets to give rapid feedback during an

experiment, and experiment scheduling and output is read from the log at the bottom of the page.

4.4 Trapping an Ion for the First Time

In order to first trap a 171Yb+ ion (and know that you trapped it), a lot of things have to go right

all at the same time– e.g., laser frequencies and powers, beam alignments, RF and DC voltages,

EOM and AOM functionality, and camera alignment. Some of these things can be checked inde-

pendently.
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Transition frequencies can be verified and calibrated via Doppler-free spectroscopy. Fluores-

cence tests with neutral 174Yb can weed out laser alignment, camera position, and ionization laser

frequency as possible issues. The simpler level structure of 174Yb can be exploited to obtain con-

fidence in trap voltages, laser alignment, 369 nm and 935 nm transition frequencies, and camera

position. Here we go through each of these methods and give a description of what you should see

when troubleshooting with 174Yb/174Yb+.

4.4.1 Doppler-Free Spectroscopy

Physically important spectra are often obscured by Doppler broadening of spectral lines. This

broadening comes from the thermal motion of the atoms and has a Maxwellian velocity distribution

about v = 0. We perform Doppler-free saturated absorption spectroscopy as described in [58] to

measure sharp absorption peaks for relevant optical transitions.

Figure 4.3: The experimental setup for Doppler-free spectroscopy is shown. Two probe beams and
a counter-propagating pump beam, which overlaps completely with one of the probe beams, pass
through a hollow cathode lamp coated with all Yb isotopes. Probe beam intensities are measured
on a balanced photodetector.
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Doppler-free saturated absorption spectroscopy as described uses three beams: a strong pump

beam, and two weak probe beams which counter-propagate relative to the pump beam such that

they only overlap in excitation for atoms with velocity v = 0. One probe beam (P1) exactly

overlaps with the pump beam, and the other probe beam (P2) comes in parallel to the other two

beams but does not overlap. For exactly v = 0, the pump beam burns a large hole in the ground

state distribution of atoms as seen by P1.

The resulting fluorescence profile measured from P1 is a Doppler-broadened spectrum with a

sharp ‘Lamb dip’ at v = 0, characteristic of saturated absorption. This Lamb dip can be orders

of magnitude narrower than the Doppler-broadened peak, limited by the natural linewidth of the

transition. P2 sees a standard absoprtion profile, and we can subtract the probes beam intensities

I(P2)− I(P1) via a balanced photodetector to remove the Doppler-broadened profile and obtain

the Lamb dip only.

The experimental setup is shown in Figure 4.3. We use a Photron Hollow Cathode Lamp

(HCL) coated with all Yb isotopes in natural abundance, powered at 10 A for measuring 369 nm

transitions or 2.5 A for measuring 399 nm transitions. Incoming 369 or 399 nm light is focused

by a telescope to fit through the cathode, then it is split by a glass window into two probe beam

( 4% of total power each) and a pump beam. The probe beams are sent through the cathode to two

separate photodiodes of a PDB210A balanced amplified photodetector (PD) to monitor intensity.

The pump beam, after passing through the same window, is split by a 50-50 beamsplitter. Half of

the light is aligned to overlap with one of the probe beams inside the HCL, and the other half is

either blocked or sent to a power meter for intensity normalization if laser intensity fluctuations

are expected.

The 935 nm resonance frequency for repump is measured by sending in a 935 nm beam to over-

lap with the pump/probe 369 nm setup, with the 369 nm laser held at its experimentally measured

resonance for a specific isotope. Then the 935 nm laser is scanned. On resonance, ions trapped

in the 2D3/2 state are returned to the ground state and re-excited by the 369 nm beam. 935 nm

light is blocked from the photodetector with an IR filter, and we see a peak in 369 nm fluorescence
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Figure 4.4: The difference in probe beam intensity (measured as PD voltage difference) is plotted
vs frequency for 369 nm (top) and 399 nm (bottom) light. The resulting curves are absorption spec-
trums for the neutral (top) and ionized (bottom) ytterbium S → P transitions. The labeled isotopes
and corresponding frequencies are determined through comparison to known values; measured
peaks are within 25 MHz of expected.

at the 935 nm resonance frequency. The optical chopper and SR510 lock-in amplifier from Stan-

ford Research Systems are placed in the path of the probe beams when scanning 369 or 399 nm
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frequencies.

Figure 4.5: The 935 nm transition for 174Yb+ is measured with the Doppler-free spectroscopy
setup by holding the 369 nm beam at resonance and scanning the frequency of an overlapping 935
nm probe beam.

Absorption profiles are shown in Figure 4.4 and Figure 4.5. For the 369 and 399 nm absorption

profiles in Figure 4.4, data has been binned for every 5 MHz, and a smoothing spline interpolation

was done on which peak finding was performed. When compared to known values taken from the

Monroe lab, all peak values in the 369 and 399 nm spectrum were within 25 MHz of expected. For

the 935 nm profile, data was fit to a Gaussian centered 100 MHz above the expected value.

Since the natural abundance of 174Yb is more than twice that of 171Yb, transition frequencies

for 174Yb are found more precisely. Fortunately, the frequency differences between the isotopes

are known to high accuracy, and calibrated frequencies for 171Yb are easily determined from the

spectroscopically determined 174Yb frequencies. The Doppler-free spectroscopy setup can also be

used to verify AOM frequency shifts by sending over light from the 369 nm boards of the main

experiment.
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4.4.2 Imaging Neutral Yb

Oven functionality, laser alignment, camera position, and 399 nm laser frequency can be verified

by performing a fluorescence test with neutral Yb. To do this, oven current will need to be higher

than when hunting for ions; historically, oven current for fluorescence measurements has been 3.5-

4.5 A. It is important to be conservative with the oven current and amount of time the oven is on,

as heavily coating the blades with Yb will create electronic shorts that lead to trap dysfunction.

Figure 4.6: A microscope images 399 nm fluorescence from neutral Yb diffusing through the trap
center.

Fluorescence tests can be done with the Celestron MicroDirect microscope, as illustrated in

Figure 4.6, to verify oven functionality and beam alignment through the trap, or with the EMCCD

to get a rough estimate of camera position. To do a fluorescence test with the EMCCD, align
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the imaging system to the trap following protocol in Chapter 3, and replace the 369 nm spectral

filter pair with the 399 nm spectral filter. With the EMCCD aligned to the trap, a cloud of neutral

atoms will show on the camera and disappear when the oven is turned off. If the camera isn’t

well-focused, it can be difficult to see the cloud by eye. In this case, it is better to look at the total

counts on the CCD, which should rise after a couple of minutes and drop sharply when the oven is

shut off. If the alignment/camera position/frequency combo is good, the count drop will be > 50

at saturation.

It is also possible to check for ion creation by pulsing the 355 nm arms. With both arms at 1 W,

you should see a drop of in counts at saturation, as the ionized atoms no longer fluoresce 399 nm

light. In our experience, the drop is only about 2-4 counts, so if the imaging system or 355 beams

aren’t well aligned, there may not be a clear signal.

4.4.3 174Yb for Troubleshooting

The simpler level structure of 174Yb+ (Figure 4.7) makes it easier to trap and detect and compare

to 171Yb+. The absence of hyperfine structure due to its spin-0 nucleus removes dependence on the

magnetic field, Doppler beam polarization, and EOM functionality. The lack of hyperfine levels

also eliminates coherent population trapping, leading to additional detection counts and decreasing

sensitivity to laser scatter, small misalignments, and camera focus. Confidence in trap voltages,

laser alignment, transition frequencies, and camera position can be obtained using 174Yb+. All

relevant experimental parameters should be optimized for a 174Yb+ ion before attempting to trap

171Yb+. Calibrated 174Yb+ trapping frequencies are shown in Table 4.1.

174Yb+
Transition Frequency (THz)
399 nm 751.527300
369 nm (Doppler) 405.645570
935 nm 320.572021

Table 4.1: Calibrated 174Yb+ transition frequencies for trapping and cooling
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Figure 4.7: The level structure of 174Yb+ is shown. As with 171Yb+, 369 nm light bridges the
2S1/2 →2 P1/2 transition, and the 935 nm light repumps ions that are trapped in the 2D[3/2]1/2
state. The absence of hyperfine splitting simplifies the trapping process for 174Yb+ compared to
171Yb+.

4.4.4 Troubleshooting Summary

At each step in the trapping/troubleshooting process, I have listed possible issues that may prevent

you from seeing ions:

• Neutral Fluorescence: Oven functionality, 399 nm frequency or alignment (microscope),

and camera position (EMCCD)

• 174Yb+: Trapping voltages (resonator Q-factor or ωz/ωr trap stability), 369/935 nm laser

frequencies and alignments, camera focus (more sensitive for ions than neutral Yb), and

previous items

• 171Yb+: EOM frequencies and powers, Doppler beam polarization, magnetic field, and

previous items
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4.5 System Calibration for Quantum Simulation

This is an instructional section describing the typical daily experiments required to calibrate our

system, the final step being implementation of an MS entanglement operation.

4.5.1 Optimizations with One Ion

4.5.1 Trapping 171Yb+ and Minimizing Micromotion

First, check that the 369 nm and 935 nm laser frequencies are correct and locked to the target

frequency to within a MHz. Calibrated target frequencies for 171Yb+ at the time of writing are

given in Table 4.2:

171Yb+

Transition Frequency (THz)
399 nm 751.528250
369 nm (Doppler) 405.644370
935 nm 320.569295

Table 4.2: Calibrated 171Yb+ transition frequencies for trapping and cooling

After trapping an ion via the loading process described in Section 3.4.2, close the optical shut-

ters corresponding to Protection+ and the 399 nm ionization beam. Scan the RF voltage through as

wide a range as possible, while monitoring ion position on the EMCCD. If the ion position changes

due to increasing or decreasing RF confinement, then the ion is not positioned on the RF null and

is therefore experiencing micromotion. This is due to poor overlap of the RF and DC potentials,

and can be remedied by adjusting the DC compensation voltages until the ion is centered on the

micromotion minimum. A well-compensated ion position will no longer vary with RF power. A

mismatch in RF and DC potentials may be caused by misalignments in blade geometry when first

trapping, or by a drift in trap potentials over time due to buildup of Yb+ on the trap blades.
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4.5.1 Doppler Cooling, Detection, and Optical Pumping

The Doppler cooling, detection, and optical pumping beams should be aligned together and then

optimized independently. Align the Doppler cooling beam over the ion as precisely as possible,

by maximizing the highest count value per pixel as read on the EMCCD. Check that the rest of

the 369 nm beams are overlapped well with the Doppler beam pathway. Then optimize Detection

alignment and power, using the following experiment sequences:

Doppler Cool → Detect

Doppler Cool → Close 935 Shutter → Detect

The second experiment sequence provides a measure of dark counts. Without the 935 nm beam,

ions will become trapped in the 2D3/2 state and no longer fluoresce. The Doppler Cooling sequence

is usually between 5-10 ms, and an optimal PMT detection time is generally ∼ 250 µs with about

1 background count and 7-9 bright counts, found via fidelity measurements as described in Section

2.3.1. The HWP prior to the Doppler and Detection fiberports should be adjusted to optimize

counts, and the measured optimal value of laser power out of the Doppler cooling fiber is 90− 100

µW. Optimal cooling power can be determined using a variety of thermometry measurements,

described in Chapter 5 and Chapter 7.

Now perform an optical pumping experiment:

Doppler Cool → Optically Pump for Time t→ Detect → Increase t→ Repeat

For t = 0 (no optical pumping), the ion will be detected in the bright state (|1⟩) according to the

measured detection fidelity. As t is increased, the probability of finding the ion in |1⟩ will decrease

exponentially with a characteristic decay time τ . The results of an optical pumping experiment are

shown in Figure 4.8, with a 1/e characteristic decay time of about 0.28 µs. If the optical pumping

beam is too strong, it may heat the ion within a sideband cooling cycle due to power broadening;

however, this has not been a measurable effect in our system. To optically pump one ion, we use

a beam power of 0.35 mW, and for larger numbers of ions, we increase optical pumping power as

needed to keep the characteristic decay time below 0.5 µs.
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Figure 4.8: The probability of detecting an ion in the |1⟩ (up) state is plotted against optical pump-
ing pulse times and fit to an exponential curve with a characteristic decay time 0.28 µs.

4.5.1 Rabi Oscillations, Sideband Scans, and Thermometry

To begin optimizing coherent operations, check that the 355 nm beatnote lock is on, and set the

beatnote frequency to that of the carrier transition (ΩR). Obtain a carrier π-time (used later for

Ramsey experiments) by performing a Rabi oscillation:

Doppler cool → Optically Pump → Sideband Cool → Raman pulse of time t→ Detect →

Increase t→ Repeat

A Rabi curve fit to 1
2
[1−cos(ΩRt+ ϕ)e−t/τ ] is shown in Figure 4.9. For calibration experiments

performed with 0.13 W in each Raman arm, our carrier π-time is around 2.5 µs with a characteristic

decay τ > 300 µs, which we suspect arise due to decoherence from power fluctuations, beam

pointing instability, and ion heating.

If the carrier and red sideband frequencies are completely unknown, a sideband scan (described

below) must be performed prior to the Rabi experiment. If sideband cooling is inefficent, a few

iterations of the experiments described in this section may need to be completed in order to fully

optimize the system, as the π-time of a Rabi oscillation is temperature-dependent, and sideband
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Figure 4.9: The probability of detecting an ion in the |1⟩ (up) state is plotted against Rabi pulse
times and fit to a 214 MHz Rabi frequency and 300 µs decay time.

cooling requires an accurate RSB frequency and RSB π-time.

Three types of sideband scans are performed during calibration, with the following experiment

sequencing:

Doppler cool → Optically Pump → Apply π-pulse at frequency f → Detect → Increase f →

Repeat

1. Broad Scan: A broad, coarse sideband scan is used to check for Zeeman state excitation.

The m = −1,+1 Zeeman levels couple to the qubit states through σ+ and σ− light, which

is minimized by adjusting the QWP’s and HWP’s in the Raman beamline. An example of

a broad sideband scan with strong Zeeman coupling at ±6 MHz is shown in the top panel

of Figure 4.10, and an example of the desired spectrum is shown in the bottom panel. The

bottom panel includes only the carrier, first order RSB/BSB, and second order RSB/BSB
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peaks. The pulse time used in Figure 4.10 is the RSB π-time, which results in an overdriven

carrier profile about the 222 MHz carrier AOM frequency.

Figure 4.10: Axial sideband spectrum with heavy coupling to Zeeman states (top) and with Zeeman
state coupling well-suppressed (bottom). The pulse time for this scan is the RSB π-time, resulting
in an overdriven carrier profile.

2. High Power Scan: A precise RSB frequency value for sideband cooling is found by doing

a narrow, fine frequency scan across the red sideband and fitting the peak to a Gaussian. At

high power, the measured RSB frequency includes a two-photon Stark shift (Equation 2.27),

as well as a far stronger four-photon Stark shift caused by off-resonant coupling to the carrier.

3. Low Power Scan: The sideband frequencies in the limit of zero power do not contain AC

Stark shifts. By highly attenuating the Raman beams and using longer pulse times (due to
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decreased Rabi frequency), we measure RSB and BSB frequencies far closer to their true

values. These are the frequencies that are used for entangling operations.

With an accurately measured RSB frequency, we can perform time-averaged thermometry mea-

surements as described in Chapter 5 to determine the RSB π-time, sideband-cooled ion temper-

ature, and heating rate of the axial motional mode. A thermometry measurement is shown in

Figure 4.11 for an ion in the blade trap, with a final sideband-cooled phonon occupation number

n̄ = 0.3 and a linear heating rate of 0.2 quanta/sec. In order to decrease the number of experiments

required, our time-averaging calibrations assume a thermal final state distribution and therefore

overestimate the ion temperature. This is okay; the purpose of the time-average calibration is sim-

ply to minimize the final temperature by varying pulse times and to reveal the existence of any

excess heating.

Figure 4.11: A time-averaged heating rate measurement of ˙̄n = 0.2 q/s for an ion sideband-cooled
to n̄ < 0.3
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4.5.1 Ramsey Experiments

Ramsey experiments are used for beam alignment, coherence measurements, finding an accurate

carrier frequency, and for balancing the differential AC Stark shift. Here, the microwave π/2 pulses

used in Section 3.4.4 are replaced with 355 nm Raman pulses:

Doppler Cool → Optically Pump → Sideband Cool → Raman π/2 Carrier Pulse → Delay

→ Raman π/2 Carrier Pulse → Detect → Increase Delay Time → Repeat.

To measure the Rabi carrier frequency, nothing happens during the delay. We adjust the carrier

frequency until the ion is detected as bright for every delay time out to at least 5 ms. To measure

coherence time, still nothing happens during the delay, but the beatnote frequency is slightly de-

tuned from the carrier resonance so that an exponential decay due to decoherence can be fit to the

Ramsey fringe decay. Beam alignment is measured by turning on individual Raman arms during

the delay, as described in Section 3.4.4.

Finally, we balance the power in the Raman arms by submitting simultaneous red and blue

tones during the delay, symmetrically-detuned by δ from the red and blue sidebands. We set δ to

be ≥ 3(ηΩ) to avoid populating the phonon modes n±1. The symmetrically-detuned red and blue

tones contribute Stark shifts that, given equally intense and well-aligned Raman beams, should be

equal in magnitude and opposite in sign. If the Stark shifts do not cancel, a Ramsey fringe will

appear as the delay time is scanned. We adjust the power in one arm relative to the other until

the Ramsey fringe has been eliminated. Power adjustment experiments are often performed with

the second Ramsey π/2 rotation about the x-axis of the Bloch sphere rather than z. This puts the

expected counts at half contrast, and we avoid measuring any decay effects on fluorescence.

4.5.2 Optimization with Two Ions

Now that the experiment is calibrated for one ion, we load a second ion and do a similar set of

experiments. The micromotion minimum and optimal laser alignments should not have changed,

but the Doppler, Detection, and Optical Pumping powers will need to be increased, as the ions
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will have moved symmetrically away from the micromotion minimum resulting in a lower red-

detuned transition frequency. This also means that detection counts will not increase linearly with

ion number.

We find that it is helpful (and often necessary) to cool both axial modes of motion, and so a

high power sideband scan is required to pinpoint the zig-zag motional mode frequency. We then

measure the COM mode heating rate, which is expected to be twice that of one ion. In Chapter 7

this is shown not to be the case for the rod trap, in which we observe heavily uncorrelated heating.

My guess regarding the difference in heating mechanisms is that the blade trap is more sensitive

to electric field fluctuations due to its smaller dimensions. Independent temperature measurements

for each of the two ions, using the Andor software, can be helpful in diagnosing mistakes in

micromotion minimization and in Doppler and Raman beam alignment. The power balance of the

Raman beams should be re-verified as well, as a difference in AOM deflection of the red and blue

tones will have a larger effect on two ions than on one.

Now we can perform the MS oscillation protocol:

Doppler Cool → Optically Pump → Sideband Cool → Drive Symmetrically-Detuned RSB and

BSB Tones for Pulse Time t→ Detect → Increase Pulse Time → Repeat.

The ions should oscillate between |00⟩ and |11⟩ at a frequency determined by the Ising couplings

Jij (Equation 2.52), and reach the maximally-entangled Greenberger-Horne-Zeilinger (GHZ) state

1√
2
|00⟩ + |11⟩ at the π/2-time. The symmetry of the detuning δ can be further optimized by

scanning the RSB frequency to pinpoint the maximum |00⟩ → |11⟩ transition probability. A

MS oscillation curve is shown in Figure 4.12, fit to an exponentially decaying sin2 curve with a

characteristic decay time of 610 µs.
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Figure 4.12: A Mølmer-Sørensen interaction curve is shown, fit to an exponentially decaying sin2

curve with a characteristic decay time of 610 µs.
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CHAPTER 5

OPTIMIZED PULSED SIDEBAND COOLING AND ENHANCED THERMOMETRY OF

TRAPPED IONS

5.1 Section Overview

For trapped ion experiments, resolved sideband cooling (SBC) is the most popular sub-Doppler

cooling technique used to prepare systems near their motional ground state [59, 60, 61, 62]. Its

widespread use stems largely from its applicability to most trapped-ion setups, since its effective-

ness does not rely on using a specific ion species or trap geometry [50, 63]. In practice, SBC allows

trapped ions to be initialized in a nearly-pure state of motion, with a typical average harmonic oc-

cupation n̄ ≲ 0.05 [59]. However, SBC is often the longest time component in an experimental

cycle by a significant factor [64], especially when many motional modes need to be cooled. Al-

though individual addressing can facilitate some speedups in long ion chains [63], this chapter

presents the first general method for determining an optimal SBC protocol.

Accurate ion thermometry goes hand-in-hand with near-ground-state cooling techniques such

as SBC. Estimating ion temperatures and heating rates are essential characterizations in ion trap

experiments [65, 50] since they inform the efficacy of cooling protocols and potential sources

of noise. Yet, standard methods for measuring n̄ near the ground state implicitly assume the

motion is well-described by a thermal distribution of harmonic oscillator levels [59, 61]. When

this assumption is violated, as is the case for Fock states, coherent states, or states following

significant SBC [66, 67], more sophisticated thermometry methods must be employed to accurately

characterize ion motional temperatures.

Here, we present a framework for calculating the optimal sequence of SBC pulses for near-

ground-state cooling, and we develop an improved thermometry technique to more accurately

measure n̄ following SBC. Our optimal cooling strategy is applicable to any trapped ion experi-
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ment using pulsed SBC and flexible enough to incorporate decoherence effects or heating models if

desired. Likewise, our method to determine ion temperatures requires only the experimental hard-

ware needed for implementing pulsed SBC. We benchmark both our optimized SBC sequences and

our new thermometry technique using a trapped 171Yb+ ion, finding close experimental agreement

with theory predictions as well as significant improvements compared with traditional cooling and

thermometry protocols.

This chapter is structured as follows. Section 5.2 reviews the standard theory of pulsed re-

solved SBC. In Section 5.3 we recast the pulsed SBC problem into a matrix formalism that allows

for efficient numerical optimization of SBC pulse sequences. Section 5.4 introduces a new experi-

mental technique to accurately measure ion temperatures following sub-Doppler cooling, followed

by experimental validation in Section 5.5. We summarize with concluding remarks in Section 5.6.

5.2 Resolved Sideband Cooling Theory

When a trapped ion of mass m is confined to a 1D harmonic potential of frequency ω, resolved

SBC allows for sub-Doppler cooling of the ion temperature. Prior to the onset of SBC, we assume

that the ion has been Doppler cooled using a transition of linewidth Γ to the Doppler cooling limit

[68, 69]

n̄i ≈
Γ

2ω
. (5.1)

Following Doppler cooling, the probability of finding the ion in the nth harmonic oscillator level is

well-described by the thermal distribution

pth(n) =
n̄n

(n̄+ 1)n+1 (5.2)

which is solely parameterized by the average harmonic state of the ion n̄.

SBC protocols may be implemented for both optical and hyperfine qubits; here we begin by

focusing on the latter. Typically, far-detuned Raman transitions of wavelength λ and linewidth

γrad ≪ ω are used to manipulate the electronic and motional states of the ion. When the Raman
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transition frequency is in resonance with the qubit splitting, it drives a “carrier” transition between

qubit levels |↓⟩ and |↑⟩ at Rabi frequency Ω, with no change to the motional state. Detuning

the Raman frequency by integer multiples of the trap secular frequency ω excites a “sideband”

transition, coupling spin flips to a change in motional state from |n⟩ to |n′⟩, at Rabi rate [70, 50]

Ωn,n
′ = Ωe−η

2
/2

√
n<!

n>!
η|n−n

′|L|n−n
′|

n<
(η2), (5.3)

where n< (n>) is the lesser (greater) of n and n′,

L(α)
n (X) =

n∑
i=0

(−1)i
(
n+ α

n− i

)
X i

i!
(5.4)

is the generalized Laguerre polynomial, and

η ≡ ∆kx0 = 2 sin(θ/2)
2π

λ

√
ℏ

2mω
. (5.5)

is the Lamb-Dicke parameter for counter-propagating Raman beams which intersect at an angle θ.

Here, we will refer to an n − n′ = 1 transition as a first-order red sideband (RSB) transition and

an n− n′ = −1 transition as a first-order blue sideband (BSB) transition.

SBC of hyperfine qubits is typically characterized by a sequence of discrete RSB pulses inter-

leaved with optical pumping. A traditional pulsed SBC protocol (which we will call the “classic”

protocol) executes as follows [59, 61]. After Doppler cooling to an average harmonic occupation

n̄i, and optical pumping to the qubit state |↓⟩, an initial motional level ni ≫ n̄i is selected as the

entry point for SBC. A first-order RSB π-pulse is then applied for t = π/Ωni,ni−1 followed by fast

optical pumping, to drive the transition | ↓, ni⟩ → | ↓, ni − 1⟩. Then another iteration is performed

using t = π/Ωni−1,ni−2, and so on, until the sequence concludes with a final t = π/Ω1,0 pulse.

In principle, this protocol sweeps the fraction of population for which n ≤ ni into the motional

ground state.

By starting at larger ni and iterating for more pulses, the classic SBC protocol can theoretically
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reach the SBC limit of n̄min ≈ (γrad/2ω)
2 ≪ 1 [50, 71, 70, 72]. In practice, the achievable final

n̄ may be limited by effects such as imperfect RSB π-pulses, motional heating, and nearly-infinite

RSB π-times (Section 5.3.4); this is indeed the case for several trapped-ion experiments [73, 67,

74]. Nevertheless, post-SBC temperatures of n̄ ≲ 0.05 are routinely achieved with the classic

method [59, 61], particularly when the initial state before SBC is in the “low η-n̄i regime”: η ≪ 1

and n̄i ≲ 10.

For optical qubits, continuous SBC is the preferred protocol for achieving near-ground state

cooling [75]. In this approach, a RSB is driven continuously on a narrow optical transition while

optical pumping is accomplished by spontaneous emission from the excited state. Given the slow

decay rate of narrow transitions, spontaneous emission may be enhanced by temporarily coupling

the excited state to a dipole-allowed transition. In 40Ca+, for instance, coupling the quadrupole

D5/2 qubit level to the dipole-allowed P3/2 state can lead to cooling rates of ˙̄n = 5 ms−1 when

strongly saturating the RSB transition [75]. As we will show in Section 5.3, this rate is comparable

to the pulsed SBC rate in hyperfine qubits driven by a carrier Rabi frequency Ω ≈ 2π × 10 kHz.

For our experiments in Section 7.5 we set Ω = 2π × 65 kHz, leading to an initial cooling rate of

˙̄n ≈ 30 ms−1.

Continuous SBC has been well-described via detailed theoretical models [60, 69] and validated

in experiments [75]. For a given optical pumping rate, the optimum RSB parameters for achieving

the lowest final n̄ may be estimated from the full set of atomic rate equations [60], or determined

experimentally by scanning over different values of RSB power and frequency [76]. In contrast, the

discreteness of pulsed SBC protocols prevents a similar rate-equation type analysis while greatly

expanding the parameter space of possible cooling sequences. For these reasons, finding a pulsed

SBC model that allows for efficient determination of optimal sequences has remained elusive to

date.
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5.3 Optimized Pulsed SBC Protocols

For hyperfine qubits, the intuitive ‘classic’ protocol introduced in Section II is not the most efficient

pulsed SBC method for reducing ion temperatures. Given a chosen ni, which sets the number of

pulses, there are no adjustable parameters that may be used to optimize the cooling rate per pulse

or per unit time. When starting from small Doppler-cooled n̄i, only a few pulses are needed and

the deviation from optimal is small; when n̄i is large (≳ 10), the deviation from optimal widens

considerably. If n̄i is large enough, the classic method will fail to prepare ions in the ground

motional state as mentioned previously in Section 5.2.

In this section, we introduce two globally-optimized pulsed SBC protocols: a single-parameter

protocol called the “fixed” method, and a full-parameter protocol called “optimal” method. For a

given number of pulses, the optimal method provides the lowest possible n̄ after first-order SBC.

When n̄i is large, we show how these protocols can be extended to higher-order SBC to avoid

the limitations of first-order cooling. To compute these optimized SBC protocols we must first

numerically simulate the complicated interplay between each π−pulse and its effect on the entire

harmonic oscillator population p(n). Below, we develop a graph-theoretic description of pulsed

SBC to accomplish this task and provide a framework for fast optimization of pulse sequences.

5.3.1 Graph-Theoretic Description of Pulsed Sideband Cooling

We embed SBC into a graph G = (V,E) with a set of vertices V and edges E. The ver-

tices V represent a truncated set of the harmonic states n = [0, nmax] where nmax ≫ n̄i is

well satisfied. Each vertex is weighted by the probability corresponding to its harmonic state

V = {p(0), p(1), . . . , p(nmax)}, as shown in Figure 5.1. Each vertex has an undirected edge loop

weighted by the probability of not cooling: an(t) = cos2(Ωn,n−1t/2) in the case of first-order cool-

ing shown in Figure 5.1. The probability of cooling bn(t) = sin2(Ωn,n−1t/2) weights a directed

edge from the n to n−1 vertices. For mth-order cooling, the directed edges would connect to their

mth leftmost neighbor with the associated Rabi frequency Ωn,n−m.
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p(0) p(1) p(2) ...
b1(t) b2(t) b3(t)

1 a1(t) a2(t)

Figure 5.1: Graph G representing first-order SBC. The set of vertices V is represented by circles
and weighted by the current harmonic probability distribution p(n). The set of edges E is repre-
sented by lines: loops weighted by an(t) and directed edges weighted by bn(t).

To model one SBC pulse of time t0, all vertex weights take one traversal of their respective

edges resulting a new set of vertex weights: V (1)
n = an(t0)V

(0)
n + bn+1(t0)V

(0)
n+1. To model N SBC

pulses, the graph is traversed N times. In general, each traversal may have its own associated pulse

time {t0, t1, . . . , tN−1}.

We numerically represent the graph and SBC process as a matrix equation. The initial vertex

values map to the vector p⃗th = {pth(0), . . . , pth(nmax)}, where pth(n) is the initial thermal distri-

bution following Doppler cooling (Equation 5.2). One traversal of the graph maps to the upper

triangular matrix

W (t) =



1 b1(t) 0 . . .

0 a1(t) b2(t) . . .

0 0 a2(t) . . .

...
...

... . . .


(5.6)

which is shown graphically in Figure 5.2(a) for t = 1.016 × 2π/Ω. W (t) acting on p⃗th results in

an updated probability vector p⃗ = {p(0), . . . , p(nmax)}



p(0)

p(1)

p(2)

...


=



1 b1(t) 0 . . .

0 a1(t) b2(t) . . .

0 0 a2(t) . . .

...
...

... . . .





pth(0)

pth(1)

pth(2)

...


. (5.7)

To encode the effects of multiple SBC pulses, all individual pulse matrices W (t) are multiplied

together: W (tN−1) . . .W (t1)W (t0). In the simplest case, when all pulses are of the same duration
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Figure 5.2: The first 30 × 30 matrix elements of the weight matrix (Equation 5.6) are shown
graphically for (a) a single pulse and (b) 25 repetitions of the pulse applied in (a).

t0, the SBC interaction is encoded as a matrix power of W (t0). For example, the final harmonic

level occupation after 25 identical pulses can be calculated as p⃗ = W 25(t0)p⃗th, with the low-n

matrix elements of W 25 shown in Figure 5.2(b).

5.3.2 Fixed protocol

Optimized pulse sequences may be efficiently computed within the graph-theoretic framework

introduced above. To begin, we consider a single-parameter optimization that we call the “fixed”

protocol. Each of the SBC pulses is chosen to have the same duration Tfixed = {t0, . . . , t0}, similar

to SBC schemes implemented in some trapped-ion studies [77, 78, 73]. Here we explicitly seek to

minimize the function

n̄(t0) =

nmax∑
n=0

n
[
WN(t0)p⃗th

]
n

(5.8)

to find the time t0 which yields the lowest possible n̄ given N identical SBC pulses.

The optimal pulse time for the fixed method can be computed quickly since there is only one

parameter to optimize for any number of pulses N . The most costly step in minimizing Equa-
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tion 5.8 is the calculation of [WN(t0)p⃗th]n for different t0. However, standard numerical packages,

such as Python’s NumPy module [79], can exponentially reduce the number of matrix multipli-

cations needed when computing a power of a matrix through binary decomposition. Assuming

N > 3, a binary decomposition recursively squares the matrix, exponentially increasing the matrix

power: 2, 4, 8, and so on. The implementation is adapted to allow for arbitrary matrix powers, with

a computation time scaling with N as O(log2(N)) and with system size nmax as O(n3
max).

5.3.3 Optimal Protocol

We now consider the optimal protocol, which is a full-parameter optimization where each pulse

time is treated as an independent variable. Given a set of experimental parameters, and restricting—

for now—to first-order RSB pulses, the remaining degrees of freedom are the durations of each

SBC pulse. The optimal protocol searches the full available parameter space of N distinct pulse

times, yielding the lowest possible n̄ for any given value of η, n̄i, Ω, and N .

The optimal protocol, using first-order RSBs, executes as follows. First, the initial harmonic

populations p⃗th and Rabi frequencies Ωn,n−1 are calculated over a truncated range of harmonic

states [0, nmax] (nmax ≫ n̄i), based on the experimental parameters η, n̄i, and Ω. Next, a gradient

descent algorithm is applied to minimize the equation

n̄(t0, t1, . . . , tN−1) =

nmax∑
n=0

n [W (tN−1) . . .W (t1)W (t0)p⃗th]n (5.9)

to find the pulse schedule Toptimal = {t0, t1, . . . , tN−1} that gives the lowest average harmonic

occupation n̄(t0, t1, . . . , tN−1) following N SBC pulses.

Since each pulse time in the pulse schedule Toptimal is an independent variable, computing the

optimal Toptimal scales exponentially with the number of pulses. For large nmax or N , this can cause

calculations to exceed readily available computational resources. However, we find that careful

bounding of the gradient descent minimization can help reduce computation times. For example,

using a standard laptop we observe that a 50-pulse SBC optimization takes less than 90 seconds to
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compute, which is a factor of two faster than for the unbounded case.

The predicted performance of the optimal, fixed, and classic protocols are compared in Fig-

ure 5.3. Simulations are performed using the parameters n̄i = 15.36 and η = 0.18, which are

similar to those of our experimental system described in Section 5.5. For fewer than ∼ 50 SBC

pulses, the classic method not only takes the longest absolute time to implement (Figure 5.3(a)),

but also yields the highest final n̄ (Figure 5.3(b)). In comparison, the fixed (solid black) and op-

timal (dashed gray) methods perform nearly identically, both in overall cooling time and final ion

temperature. For larger n̄i, the classic method drifts further away from optimal, while the fixed

method retains its near-optimal behavior.

5.3.4 Multiorder Optimization

When outside of the low η-n̄i regime, the trapping of harmonic population in high-n states can

limit first-order RSB cooling [78, 73, 67]. As shown in Figure 5.3(c), the first-order RSB Rabi

frequency approaches zero for specific high-n harmonic levels (approximately n = 112 for our

chosen parameters). As a consequence, any initial population n ≳ 112 will be trapped in these

high-n states, even while the remaining population n ≲ 112 is swept towards the ground state.

This population trapping effect is visible in Figure 5.3(d), which shows the harmonic popu-

lation distribution following 50 first-order SBC pulses. A significant population near n = 112

remains uncooled, contributing approximately 0.3 motional quanta to the final value of n̄: an or-

der of magnitude higher than the SBC cooling limit and large compared to what is considered

near-ground-state cooling. This effect also explains why the three first-order methods in Fig-

ure 5.3(a)-(b) begin to converge at large numbers of pulses: the trapped population contributions

to n̄ dominate at colder temperatures.

To avoid population trapping at high-n, higher-order RSB pulses can be incorporated into the

SBC protocol. We refer to this scheme as “multiorder” cooling. Particularly in experimental

regimes where η or n̄i are large, trapped populations may be so significant that multiorder cooling

is required to achieve near-ground-state temperatures [78, 73, 67]. This is because the harmonic
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Figure 5.3: The classic, fixed, optimal, and multiorder protocols are compared for an initial tem-
perature of n̄i = 15.36, and η = 0.18 (see text for definitions). (a) The total sideband cooling time
(excluding optical pumping), and (b) the cooled n̄ as a function of the number of SBC pulses. (c)
Scaled frequencies for the first-order (solid) and second-order (dash-dot) RSB showing the near-
zero frequency of the first-order RSB at n = 112. (d) Initial thermal distribution (solid light red)
and distributions after 50 pulses of first-order fixed (solid black) and multiorder fixed (dash-dotted
purple).

87



levels with near-zero RSB Rabi frequencies shift to smaller n as η increases, and because larger

fractions of the initial population will be trapped at high-n as n̄i increases.

Multiorder cooling circumvents population trapping since, for different RSB orders, the Rabi

frequencies approach zero at different values of n. This is illustrated in Figure 5.3(c), where it

can be seen that higher RSB orders exhibit their first zeros at higher values of n. This allows for

multiorder pulse sequences which first move population from high- to intermediate-n, then employ

first-order pulses to reach the ground state.

The graph-theoretic framework we introduced in Section 5.3.1 can easily incorporate higher-

order pulses. For an mth order pulse of time t, the probability of not cooling is

an(t) = cos2(Ωn,n−mt/2) and is mapped to the diagonal of the weight matrix W (t). Likewise,

the probability that the mth order pulse takes |n⟩ → |n−m⟩ is bn(t) = sin2(Ωn,n−mt/2) and is

mapped to the mth upper diagonal of W (t). Both the fixed and optimal protocols may then be

calculated for multiorder cooling once the W (t) matrices are constructed.

We simulate and optimize a multiorder fixed protocol with N3 third-order pules, N2 second-

order pulses, and N1 first-order pulses fixing the total number of SBC pulses N = N1 +N2 +N3

and allowing the pulse time to vary per order

n̄(t1, t2, t3) =

nmax∑
n=0

n
[
WN1(t1)W

N2(t2)W
N3(t3)p⃗th

]
n
. (5.10)

N1, N2, and N3 were selected by brute force optimization of a block sequence (detailed in the next

paragraph). Figure 5.3(b) shows multiorder cooling (dash-dotted purple) working significantly

faster than the optimal first-order method, cooling from n̄i = 15.36 to a final n̄ = 0.06 after only

50 pulses. In addition, the multiorder protocol avoids the high-n population trapping present in the

first-order sequences. This can be seen in Figure 5.3(d), where population is much more efficiently

transferred from high-n to low-n when multiorder pulses are used.

Multiorder cooling introduces further optimization and experimental challenges. For an N

pulse SBC protocol that includes km pulses of order m, there are a factorial number of permutations
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(N !/
∏

km!) in which the pulse orders may be sequenced, and an exponential number of {km}

choices which satisfy
∑

km = N . For small numbers of pulses (N ≲ 20), we used a brute

force computation to conclude that a “block” sequence is best: all km pulses of the same order m

stay together in a “block,” and higher-order m blocks are applied before lower orders. Under this

restriction, the number of possible sequences becomes polynomial in the number of applied orders

m, scaling as O(Nm−1).

In practice, applying pulses with arbitrarily high orders is not experimentally feasible. Tran-

sition linewidths narrow for higher orders, making resonant excitation difficult. In addition, tran-

sition rates decrease, making pulse times impractically long (Equation 5.3). In our experimental

demonstration (Section 5.5), we reliably address RSB transitions up to 3rd order. If higher RSB

orders are needed, but not possible to apply, alternation between lower orders may still remove

trapped population [73] at the cost of longer pulse sequences.

5.4 Thermometry of Sideband Cooled Distributions

In the quantum regime, full ion thermometry requires knowledge of the probabilities p(n) for oc-

cupying each harmonic level n, so that the average occupation n̄ =
∑

np(n) may be calculated.

Given the impracticality of measuring dozens or hundreds of probabilities p(n) to high accuracy,

thermometry techniques must make assumptions about the underlying distribution p(n). The most

common one is to assume that p(n) is thermal, in which case n̄ may be extracted by taking the ratio

of first-order RSB and BSB transition probabilities [59]. However, Section 5.3 and Figure 5.3(d)

demonstrated that sideband-cooled ions can have dramatically non-thermal distributions p(n), de-

pending on the cooling protocol, the number of RSB orders, and the number of cooling pulses.

Thus common ion thermometry methods may give widely inaccurate results following extensive

sideband cooling, motivating development of a new approach.

In this section, we begin by outlining two common ion thermometry methods, their underlying

assumptions, and the reasons they fail to correctly measure ion temperatures following signifi-

cant sideband cooling. We then introduce a new technique for ion thermometry which has been
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specifically tailored to reveal ion temperatures after sideband cooling and depends only on the

time-averaged value of RSB transitions.

5.4.1 Existing Methods

Nearly all experiments measuring trapped-ion temperatures deep in the quantum regime follow

the approach used in Ref. [59], which we call the “ratio” method. The ion is first initialized in

the state |↓⟩, and the first-order red and blue sidebands are then driven with the same power for

the same time. If the ion motional distribution is thermal, then the ratio of RSB to BSB transition

probabilities can be related to the average harmonic level occupation n̄ (Appendix C):

r ≡
P RSB
↑ (t)

P BSB
↑ (t)

=
n̄

n̄+ 1
. (5.11)

This ratio r may be experimentally determined by fitting absorption lineshapes to frequency scans

over the red and blue sidebands (as in [59]), or by driving red and blue sidebands on resonance and

taking the ratio of the resulting time series.

The ratio method is powerful due to its direct dependence on n̄ and experimental ease. How-

ever, the ratio method relies on the assumption of a thermal harmonic distribution which is inher-

ently mismatched to the motional distribution of ions following significant sideband cooling (see

Figure 5.3(d)). As we will show in Section 5.5, this assumption can lead to an order-of-magnitude

underestimate of the final n̄ after only moderate sideband cooling.

When the underlying motional distribution is known to be non-thermal, alternative thermome-

try methods may provide a better estimate of n̄. One popular method performs a frequency-domain

analysis of a BSB Rabi oscillation, using singular value decomposition (SVD) to extract the har-

monic level probabilities p(n) [66]. In this method, a BSB oscillation is described as a matrix of

transition probabilities bn(ti) = sin2(Ωn,n−1ti/2) acting on the level probability vector p⃗ to yield

the measured fluorescence at each timestep ti. SVD is then used to pseudo-invert the transition

probability matrix and isolate the vector of p(n)’s (see Appendix B for more detail). This tech-
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nique has been successfully implemented to measure n̄ for both thermal states as well as coherent

states [66].

Although SVD is a flexible method for measuring n̄ in non-thermal distributions, there are sev-

eral drawbacks. First, data acquisition can take a long time since long-oscillation time series are

necessary to accurately determine as many harmonic state probabilities as possible. This is further

compounded by the need to perform many thousands of repetitions to keep quantum projection

noise low and avoid potential overfitting during the SVD. Additionally, the output probabilities

from SVD have no physical boundary constraints such as 0 ≤ p(n) ≤ 1 or
∑

p(n) = 1. This has

been found to produce large errors when applied to distributions with many non-negligible proba-

bilities at high harmonic level n [66], as is the case for the distributions shown in Figure 5.3(d).

5.4.2 Modeling Post-SBC Distributions

The primary reason that the ratio and SVD methods fail to accurately estimate n̄ following SBC

is that they are not well-matched to the motional state distributions shown in Figure 5.3(d). After

SBC, the largest contributions to n̄ are often driven by the residual population remaining at large

n, which is neglected when using a simple thermal approximation or when focusing on only the

low-n populations. Thus, improved modeling of the probability distribution p(n) following SBC

is a prerequisite for higher-accuracy estimation of ion temperatures.

To date, the most detailed modelling of post-SBC motional distributions was outlined in [67].

Using simulated multi-order SBC pulses, it was found that the harmonic level populations were

well-approximated by a double thermal distribution:

pdouble(n) = αpth(n|n̄l) + (1− α) pth(n|n̄h) (5.12)

where n̄l captures the distribution for low n states, n̄h captures the distribution for high n states,

and the total average occupation is n̄ = αn̄l + (1 − α)n̄h. Our numeric simulations of multiorder

SBC in Figure 5.3(d) likewise demonstrate that the final state populations are well-described by

91



this double-thermal model. In [67], n̄ was experimentally determined by first fitting the simulated

distribution to extract n̄h, then fitting the experimental data to Equation 5.12 with n̄h as a fixed

parameter.

Here, we seek to generalize Equation 5.12 and develop a measurement protocol that avoids de-

pendence on numeric simulations. To begin, we propose direct measurement to find the harmonic

level populations pmeas(n) up to n = k, where k > n̄l. Using this, we compute the remaining

population fraction in all levels n > k:

prem(n > k) = 1−
k∑

n=0

pmeas(n). (5.13)

Next, we propose direct measurement of the initial thermal state n̄i before SBC, which we identify

as n̄h in Equation 5.12. Once again the quantity p(n > k) is calculated, this time for the initial

thermal distribution

pth(n > k) =
∞∑

n=k+1

n̄n
i

(n̄i + 1)n+1 (5.14)

The ratio of Eqns. 5.13 and 5.14 estimates the fraction of states remaining in an approximate

thermal distribution of average occupation n̄i. The final n̄ is then estimated as

n̄ ≈
k∑

n=0

npmeas(n) +
prem(n > k)

pth(n > k)

∞∑
n=k+1

n
n̄n
i

(n̄i + 1)n+1 . (5.15)

The advantage of Equation 5.15 is that it leverages the most information available from mea-

surement with no direct dependence on simulation. The only remaining element needed is a robust

method to measure the individual probabilities of the low-lying harmonic levels, p(n ≤ k). In

the following section, we introduce a simple technique that reveals these desired motional state

populations.
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5.4.3 Time-averaged Thermometry

We propose a “time-average” measurement protocol which, when combined with Equation 5.15,

provides a high-accuracy estimate of n̄ following SBC. This approach is constructed to measure

the individual probabilities of the first few harmonic levels. Suppose a trapped ion is initialized in

the state |↓⟩. Then, the expected probability of finding the ion in the |↑⟩ state when driven with an

mth order RSB is given by:

P RSB
↑,m (t) =

∞∑
n=0

1

2

[
1− e−γt cos(Ωn+m,nt)

]
p(n+m). (5.16)

where no assumptions have been made about the probability distribution p(n), and decoherence

effects at rate γ have been included for generality.

The running time average of Equation 5.16 is

P̄ RSB
↑,m (t) =

1

t

∫ t

0

P RSB
↑,m (t′)dt′

=
1

2

∞∑
n=0

p(n+m)

[
1− γ(

Ω2
n+m,n + γ2

)
t

+
e−γt(γ cos(Ωn+m,nt

′)− Ωn+m,n sin(Ωn+m,nt))(
Ω2

n+m,n + γ2
)
t

]
. (5.17)

We observe that for long times (t ≫ 1/(Ω2
n+m,n+γ2)), the time average converges to a partial sum

of motional state probabilities

P̄ RSB
↑,m (t) ≈ 1

2

∞∑
n=0

p(n+m). (5.18)

To extract the individual harmonic probabilities, consider driving with a first-order RSB:

P̄ RSB
↑,1 (t) ≈ 1

2

∞∑
n=0

p(n+ 1)

≈ 1

2
[1− p(0)] (5.19)
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from which p(0) can be directly estimated

p(0) ≈ 1− 2P̄ RSB
↑,1 (t). (5.20)

Higher harmonic state probabilities may then be estimated by driving with sequentially higher-

order RSBs and applying the recursion relation

p(m− 1) ≈ 2(P̄↑,m−1 − P̄↑,m). (5.21)

This time-average approach provides an efficient and robust method for extracting motional

state populations. Compared with existing methods, relatively few points are needed to determine

the time average of the RSB oscillation. Although these points should be taken at long times (rel-

ative to the RSB Rabi frequency), we note that Equation 5.18 does not depend on the decoherence

rate γ, and indeed converges faster when decoherence is included. Rather, we anticipate that the

largest errors in time-average measurements will arise from real-time changes in p(n) driven by

motional heating. Such trap heating effects have been comprehensively studied [65] and can be

incorporated into the motional state analysis if needed.

5.5 Experimental Results

In this section, we experimentally demonstrate the effectiveness of our time-averaged thermometry

method. We begin by measuring the temperature of a trapped ion following Doppler cooling and

comparing the time-average method to several existing techniques. We then repeat our measure-

ments and comparisons using an optimized sideband cooling sequence from Section 5.3, finding

that the time-average method most closely agrees with theory predictions.

Thermometry experiments are performed on a single 171Yb+ ion confined in the rod-style Paul

trap described in Section 3.2.1, with axial frequency ωz = 2π× 0.670± 0.008 MHz. In our setup,

the Lamb-Dicke parameter η = 0.18± 0.01, the Rabi carrier frequency Ω = 2π× 64.9± 0.5 kHz,

and the optical pumping time is 5 µs. Doppler cooling is performed with 369.5 nm light along
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the 2S1/2|F = 0⟩ → 2P1/2|F = 1⟩ and 2S1/2|F = 1⟩ → 2P1/2|F = 0⟩ transitions (linewidth

Γ = 2π × 19.6 MHz), while red and blue sideband transitions are performed with far-detuned

Raman beams at 355 nm. After each experiment, the qubit state is determined by irradiating the

ion with 369.5 nm light resonant with the 2S1/2|F = 1⟩ → 2P1/2|F = 0⟩ transition and capturing

the spin-dependent fluorescence on a photomultiplier tube.

5.5.1 Thermal Distribution

When an ion is cooled to its Doppler-limited temperature, the motional state is well-characterized

by a thermal distribution (Equation 5.2). Given our axial trap frequency, this temperature corre-

sponds to an average harmonic occupation n̄Dop = 14.6 ± 0.2 (Equation 5.1). We take this value

as the theoretical prediction, against which we compare several different methods for trapped-ion

thermometry.

We begin by using the ratio method to estimate the Doppler-cooled ion temperature. Fig-

ure 5.4(a)-(b) show frequency scans over the red and blue sidebands, respectively, with error bars

smaller than the size of the markers. Sinc squared functions are fit to the data with excellent

agreement and shown as solid lines. Taking the ratio of the RSB and BSB transition strengths

(Equation C.3) yields n̄ratio = 14.3± 1.5, in good agreement with the Doppler-limited prediction.

Two additional estimates of the Doppler-limited temperature may be extracted by driving a

first-order BSB oscillation. In the first method, the data is fit to a thermally-weighted Rabi oscilla-

tion P BSB
↑ (t) =

∑800
n=0 pth(n) sin

2(Ωn,n+1t/2), shown as the solid light blue curve in Figure 5.4(c).

This single-parameter fit finds an estimated n̄thermal fit = 14.9± 0.7. Using the same BSB data set,

we also employ the SVD method to estimate n̄SVD = 16.4±2.1. In Figure 5.4(c), the dashed black

curve is calculated by weighting a BSB oscillation function P BSB
↑ (t) =

∑nSVD
n=0 pSVD(n) sin

2(Ωn,n+1t/2)

with the SVD-computed probabilities pSVD(n).

Finally, the first (dark green) and second (dark purple) RSBs are driven over a long period

of time, with their respective running time averages (light green and light purple) shown in Fig-

ure 5.4(d)-(e). We take an excess of data points in our demonstration to confirm the accuracy of
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Figure 5.4: Thermometry comparisons of thermally-distributed ion motional states. (a) and (b)
are red and blue sideband frequency scans used to determine n̄ from the ratio method. (c) shows
BSB Rabi oscillation data (blue points) fit by both a thermally-weighted Rabi oscillation function
(solid blue) and a SVD analysis (dashed black). (d) and (e) are long Rabi oscillations of the first-
and second-order RSBs, respectively, with their running time-average values shown as solid lines.
(f) compares these different thermometry methods against the calculated Doppler cooling limit of
n̄Dop = 14.6.
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this new technique, though we note that only ∼ 20 data points at long times are needed to find

the same n̄ to within 5%. From the first-order RSB time average in Figure 5.4(d), we estimate

p(0) using Equation 5.20. Using the second-order RSB time average in Figure 5.4(e) and the value

for p(0), p(1) may be obtained from Equation 5.21. Finally, fitting p(0) and p(1) to a thermal

distribution yields n̄time avg = 14.6± 1.2.

All extracted values of n̄ are compared to the Doppler-limited prediction in Figure 5.4(f). We

conclude that all approaches studied here are viable methods for extracting the average harmonic

occupation n̄ when applied to thermal distributions. In the following subsection, we will re-apply

these measurement techniques to sideband cooled ions, whose motional distributions are predicted

to be significantly non-thermal.

5.5.2 Sideband Cooled Distribution

In this set of experiments, the ion is initially cooled to the Doppler limit of n̄ = 14.6, then further

cooled using 25 first-order fixed SBC pulses (see Section 5.3.2). As shown in Figure 5.3(b), this

small number of pulses cannot reach the ground state using any SBC protocol when starting from

such a large initial n̄. Nevertheless, we will show that 25 SBC pulses is already sufficient to induce

large discrepancies between different thermometry techniques.

The inherent nonthermal distribution of the sideband cooled ion is predicted to cause a sig-

nificant bias in the ratio method’s estimation of n̄. Figure 5.5 illustrates this point for the given

experimental parameters. In Figure 5.5(a), a simulated distribution after 25 first-order fixed SBC

pulses (solid) is compared to a thermal distribution with the same n̄ (dashed). The wide discrep-

ancy indicates that a thermal state is a poor approximation for the post-SBC distribution.

To quantify the potential error in assuming a thermal distribution, Figure 5.5(b) compares the

n̄ of the simulated distribution (solid) to the predicted result from the ratio method (dashed). The

ratio method drastically underestimates n̄ after just a few pulses, with almost a full order of mag-

nitude difference by 25 pulses. We caution that when ratio-method thermometry is applied after

significant SBC, it may result in misleadingly low estimates of ion temperatures and motional
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Figure 5.5: (a) Simulated motional state distribution after 25 first-order fixed pulses (solid), and a
thermal distribution with the same n̄ (dashed). (b) For any number of SBC pulses, the estimated n̄
from the ratio method (dashed) is predicted to significantly underestimate the true n̄ as calculated
from the simulated distribution (solid).
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heating rates.

Following SBC, we show the Rabi oscillations of first-order red and blue sidebands in Fig-

ure 5.6(a). The data points are connected (not fitted) to guide the eye, and errors at each point are

the size of the marker. Under the assumptions of the ratio method, the ratio of the RSB to BSB at

any point in the time provides a valid estimate of n̄. We have calculated this ratio for all points in

Figure 5.6(a), and have plotted the corresponding n̄ in Figure 5.6(b).

For thermal distributions, as assumed by the ratio method, n̄ should be constant at all times. In

Figure 5.6(b), the substantial differences in extracted n̄ with time provide experimental evidence

that the underlying state distribution is nonthermal. To estimate n̄ in Figure 5.6(b), we average over

the varying n̄ to find n̄ratio = 0.58 ± 0.56. This value is a drastic underestimate of the predicted

value n̄sim = 3.57± 0.58, by almost a full order of magnitude. Furthermore, the simulated n̄ does

not account for ion heating or noise effects, which if included would make the discrepancy even

larger.

Next, we applied a SVD analysis to the first-order BSB in Figure 5.6(a). Since the tail of the

SBC distribution is predicted to be long, we chose the length of the level probability vector p⃗ to

maximize the number of physically constrained probabilities, 0 ≤ p(n) ≤ 1. Nevertheless, the

BSB time-series data remained poorly fit for any length of p⃗, and the most accurate SVD result

(n̄SVD = 8.0± 1.3) still significantly disagrees with the simulated average harmonic occupation.

Lastly, we apply our time-average measurement technique to a sideband cooled ion. We begin

by driving the the first (dark green), second (dark purple), and third (dark orange) RSBs for a

long time period, as shown in Figure 5.6(c)-(e). Following the time average procedure outlined

in Section 5.4.3, p(0), p(1), p(2), and p(n > 2) are estimated from the measured time averages.

Substituting these probabilities into Equation 5.15 results in a measured n̄time avg = 4.1± 0.7.

The estimated level distributions from the simulation, time average method, and SVD method

are compared in Figure 5.6(f). The numerically simulated distribution (black) follows a monotonic

decrease in population for increasing n. The time average method (blue) finds similar monotonic

behavior, with a relative excess of population in the n = 1 and n = 2 levels which we attribute
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Figure 5.6: Thermometry comparisons of a sideband cooled ion. (a) the measured first-order RSB
and BSB time series. Points are connected to guide the eye. (b) n̄ estimation at each time point us-
ing the ratio method (excluding the first few time steps). (c)-(e) long-time Rabi oscillations for the
first, second, and third RSBs, respectively, with their running time averages drawn as solid lines. (f)
population distributions as estimated by numeric simulation (black), time-averaged method (blue),
and SVD (gray). (g) n̄ measurements from the ratio method, SVD, and the time-average method
are compared to a numeric simulation of SBC. Only the time-average method closely estimates
n̄sim.
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to ion motional heating out of the n = 0 state [65]. In contrast, the distribution estimated by the

SVD method (gray) is non-monotonic and exhibits a steep drop-off in population between n = 7

and n = 8, suggesting unphysical behavior which cannot be explained by standard heating models

[65]. Of all the considered thermometry techniques, the time average method best matches the

simulated level distributions, and it is the only method that does not significantly disagree with the

simulated prediction n̄sim (Figure 5.6(g)).

5.6 Conclusion

Sideband cooling has been a popular and powerful technique for the near ground-state preparation

of trapped ions. Yet, historical approaches to SBC can be made more efficient, and the measure-

ment of cooled ion temperatures can be performed with less error. In this work, we have shown

how to calculate the optimal pulsed SBC protocol for any experimental setup characterized by a

cooling laser geometry and wavelength, an ion wavepacket width (which depends upon the ion

mass and trap frequency), and an initial ion temperature (which depends on the trap frequency and

atomic linewidth). We have additionally argued that careful understanding of the expected state

distributions is a necessary precondition for accurate thermometry.

Our efficient numeric simulations and optimizations were enabled by expressing pulsed SBC

within a graph-theoretic framework. This approach is powerful for optimizing SBC pulse se-

quences, and is particularly important in regimes with high Doppler-limited initial temperatures

n̄i, or extended ion wavepackets (which correspond to a large η). We observe that repeated SBC

pulses with a single optimized time perform nearly-identically to fully-optimized pulse sequences,

while traditional protocols were the least efficient per pulse and per unit time. We have like-

wise introduced a new thermometry technique which more closely models the state distribution

after SBC, and experimentally validated its performance. In contrast, we observe that the most

common measurement technique can severely underestimate ion temperatures if extensive SBC is

performed.

In future work we anticipate that the graph representation of pulsed SBC may be expanded to
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include noise models for ion heating, decoherence, off-resonant couplings, and effects of rf-driven

micromotion. Such additions could be smoothly incorporated into the matrix formalism and would

allow for further SBC optimization in the face of realistic experimental imperfections. Extension

to multiple ions and multiple modes is another natural direction that fits nicely within the matrix

representation of pulsed SBC.

Finally, the time-average technique can open new possibilities for improved thermometry. With

this method, for instance, it should be possible to probe the time-dependent population dynamics

of trapped-ion motional states and observe how the harmonic level distribution changes in response

to external noise sources. Such experiments would provide an additional set of characterizations

which may help elucidate mechanisms responsible for anomalous ion heating.
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CHAPTER 6

SUSCEPTIBILITY OF TRAPPED-ION QUBITS TO LOW-DOSE RADIATION

SOURCES

6.1 Section Overview

Understanding the degree to which radiation-induced errors arise in ion-trap processors will be cru-

cial for mitigating potential failure mechanisms of trapped-ion quantum protocols. Recently, ex-

periments with superconducting qubits have found that ionizing radiation from small-scale sources

[80] and from cosmic rays [81] can limit the qubit coherence times and destroy quantum informa-

tion stored throughout the chip. In both cases, it is believed that ionizing radiation generates

phonons in the chip substrate, breaking Cooper-paired electrons and producing large quasiparti-

cle densities which lead to qubit decoherence [82, 83]. Since such radiation events may lead to

widespread correlated errors between qubits, they may be difficult or impossible to correct using

standard fault-tolerant methods [84].

To date, no comparable studies of radiation effects have been performed using trapped-ion

quantum processors. Although Cooper-pair breaking and quasiparticle generation are not appli-

cable to ion-based qubits, ions may instead be susceptible to alternative radiation-induced effects.

For instance, most ionizing radiation contains enough energy to increase the charge state of trapped

ions and thereby destroy the qubit [85]. Even if the qubit survives, the presence of high-energy

x-ray or γ photons may induce Stark shifts [86] or energy level fluctuations which reduce the qubit

coherence time. Furthermore, high-energy radiation has the potential to ionize background gases

or release adsorbed atoms and photoelectrons from the vacuum chamber walls [87], which may

lead to increased collisions or motional heating of the ions.

In this chapter, we study the effects of low-dose radiation on trapped-ion qubits. We first

expose an ion-trap apparatus to an array of laboratory-scale α, β and γ radiation sources to observe
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whether the ion trapping lifetime is reduced. In the presence of those same sources, we next set

limits on the changes in qubit coherence time and single-qubit rotation fidelity during exposure.

Finally, we investigate whether low-dose radiation leads to increased motional heating rates of

trapped ions. In all cases, our measurements of radiation effects are performed while the ion-trap

is in operation, rather than irradiating the trap and testing afterwards.

In Section 6.2 below, we expand on the rod trap used in this work. We describe the α, β, and

γ sources integrated with the apparatus and list their activity and estimated irradiance at the ion

position. Section 6.3 provides lifetime, coherence time, gate fidelity, and motional heating rate

results, and concluding remarks are provided in Section 6.4.

6.2 Experimental Apparatus and Radiation Sources

Figure 6.1: Sketch of the experimental arrangement (not to scale). Ions are confined in a “needle”-
style RF trap housed inside a vacuum chamber. Laser beams (blue) are used for cooling and state-
detection of the ions. Radiation (orange) emanates from a source outside the vacuum chamber and
must pass through 4.65 mm of glass before interacting with the ions.

Ions are confined in the rod-style Paul trap described in Section 3.2.1. Typical axial and radial

trap frequencies for these experiments are 2π× 390 kHz and 2π× 720 kHz, respectively. Vacuum

pressures remain below 10−10 Torr, and the walls of the vacuum chamber are made from 316L

stainless steel, with three Corning 7056 glass viewports providing optical access to the ions. As
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shown in Fig. 1, radiation must pass through one of the viewports before interacting with the

ions. The trapping, cooling, state initialization, and detection processes of the 171Yb+ qubits are

all performed using lasers as described in Ch. 3. Qubit state manipulation in these experiments

is performed by broadcasting 12.6 GHz radiation, resonant with the qubit state separation, using a

microwave horn just outside the vacuum chamber.

We subject the ion trap hardware to an array of α, β, and γ radiation sources. Table 6.1

lists each of the isotopes used in these experiments, along with their radiation type, activity, and

primary decay energies. Each source is encapsulated in a 1-inch “button” package, of U.S. Nuclear

Regulatory Commission exempt quantity, and is mounted just outside the ion trap vacuum chamber

(Fig. 6.1). To reach the ions, the radiation must pass through 45.5 mm of air, 4.65 mm of glass,

and 10.5 mm of vacuum.

The presence of the glass vacuum window is expected to cause significant variations in the

radiation dose at the ion, depending on the radiation type. For instance, it is known that α-radiation

can be stopped by a piece of paper, while thick lead shielding is often required to attenuate γ-rays

[87]. Consequently, the source activity alone is not sufficient to determine the radiation dose at the

ion; interactions between the radiation and the vacuum window must be considered as well.

We estimate the irradiance at the ion for each source in Table 6.1, which is equivalent to the

radiative energy flux passing through the trapping region inside the vacuum chamber. Several dif-

ferent numerical methods were implemented to estimate the attenuation of α, β, and γ particles

through the vacuum window. Since α particles are positively charged, we simulated their trajec-

tories using the Monte-Carlo based Stopping and Range of Ions in Matter (SRIM) code [88]. For

the decay energies of 210Po and 241Am used in these experiments, a typical α-particle is estimated

to penetrate only ∼ 20 − 30 µm into the 4.65 mm glass window, with negligible probability to

pass through the full thickness. Similarly, β-attenuation was estimated using a Monte-Carlo simu-

lation of electrons in solids (CASINO) [89], with non-negligible transmission probabilities found

for only the highest-energy β-particles. In contrast, high transmission probabilities were found

for γ-rays of the energies used in these experiments, as estimated using the NIST XCOM photon
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Table 6.1: Low-dose α, β, and γ sources integrated with the ion trap experimental apparatus. For
each source, the activity and primary decay energies are listed, as well as the estimated irradiance
at the location of the trapped ion. The presence of the vacuum window between the sources and
the trapped ion shields essentially all α particles and most β particles.

Source Type Activity Energy (keV) Irradiance (W/m−2)
Polonium-210 α 0.1 µCi 5300 ≈ 0
Americium-241 α 1 µCi 5490 ≈ 0
Strontium-90 β 0.1 µCi 546 2× 10−15

Thallium-204 β 10 µCi 764 2× 10−8

Cobalt-60 β, γ 1 µCi β: 318; γ: 1170, 1330 β: 1× 10−18; γ: 2× 10−4

Cesium-137 β, γ 5 µCi β: 512, 1170; γ: 662 β: 4× 10−7; γ: 2× 10−4

Cadmium-109 γ 10 µCi 88 6× 10−5

Barium-133 γ 10 µCi 81, 276, 304, 356, 384 3× 10−4

cross-section database [90].

6.3 Results

6.3.1 Lifetime Measurements

As an initial investigation of the effects of radiation on trapped ion qubits, we measure the trapping

lifetime of ions exposed to radiation sources. The “ion lifetime” refers to the 1/e time for which an

ion qubit remains confined within the RF trap in the absence of cooling mechanisms. If radiation

induces fast depopulation of the ion trap, it may prove uncorrectable by both standard quantum

error-correcting codes [91, 92, 93, 94, 95] or by more specialized codes which account for qubit

loss [96, 97].

Although ions have been confined in many systems for months, this requires continuous laser

cooling which is forbidden while a quantum computation is in process [98]. Without active cooling,

there is the potential for collisions to cause unmitigated ion heating and eventual loss of the qubit.

Radiation effects may further increase the local background gas pressure and collision rate, as well

as further ionize Yb+, which in both cases would lead to reduced trapping lifetimes.

Our measurements find that ion lifetimes remain in excess of one second when exposed to every

source of radiation listed in Table 6.1. For each experiment, one ion is initially Doppler cooled to
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Figure 6.2: (a) Oscillations between qubit states |0⟩ and |1⟩ when driven with microwave pulses
at 12.6 GHz, with no radiation present. (b) The single-qubit X-gate fidelities (including all state-
preparation and measurement errors) remain unchanged to within experimental error when various
types of low-dose radiation are introduced. The blue solid line indicates the results of the control
(no radiation) trial; blue dashed lines indicate 1 s.d. statistical measurement uncertainty.

0.5 mK, confined without any cooling for 1 second, then illuminated to confirm its survival in

the trap. Each experiment is repeated for 10 trials per data point. The 100% measured survival

probability at one second indicates that the true 1/e lifetime is longer than one minute in all cases.

We note that for ion-trap experiments, one second is already orders of magnitude longer than the

typical ∼ 1− 10 millisecond timescales of quantum computation and simulation studies [99, 100].

6.3.2 Coherence time and Single-Qubit Gate Fidelity Measurements

In this next round of experiments, we investigate whether (a) the coherence time of our system

is sufficiently long to apply a single-qubit rotation in the presence of radiation, and if so, (b)
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whether the single-qubit gate fidelity is measurably impacted by the radioactive sources. Radiation-

induced Stark shifts have the potential to cause uncontrolled variations in the phase evolution of

the quantum bit [86], resulting in lowered T2 coherence times and gate fidelities. If no decrease in

fidelity is observed, then we can simultaneously conclude that (a) the coherence time is sufficiently

long for single-qubit gate operations, and (b) radiation does not affect single-qubit rotations to

within experimental error.

The single-qubit gates implemented here take the form of rotations around the x̂ axis of the

Bloch Sphere, U(t) = e−iσxΩt/2, where σx is the Pauli X matrix and Ω is the Rabi frequency.

Rotations are driven using microwaves resonant with the 12.6 GHz frequency splitting between

qubit levels. When the qubit is initialized in |0⟩ and microwaves are left on continuously, the

qubit state oscillates between the |0⟩ and |1⟩ states at Rabi frequency Ω ≈ 25 kHz, as shown

in Figure 6.2(a). To estimate the average single-qubit X-gate fidelity, we apply the 12.6 GHz

radiation for a time t = π/Ω and measure the population fraction transferred from the |0⟩ → |1⟩

state.

As described, such measurements underestimate the true single-qubit gate fidelity since they

include the effects of State Preparation and Measurement (SPAM) errors. These errors account in-

clude the possibilities that the initial preparation is not purely |0⟩, but contains some small fraction

of |1⟩, and that the measurement fidelity of distinguishing |0⟩ from |1⟩ is not 100%. An indepen-

dent characterization of our total SPAM error yielded 3.3± 1.3%, which is the dominant source of

infidelity for the measurements in Figure 6.2(b).

The measured single-qubit X-gate fidelities, including SPAM errors, is shown in Figure 6.2(b).

Each experimental trial was repeated 10,000 times to keep quantum projection noise errors at the

level of ∼ 10−2. To within experimental error, we observed no radiation-induced change during the

combined operations of state preparation, single qubit rotations, and measurement when compared

with our control trial. Independently, by performing multiple concatenated X−gates, we bound

the maximum radiation-induced single-qubit fidelity error (in the absence of SPAM) at the < 0.3%

level. We therefore conclude that (a) the coherence time of the trapped ion remained sufficient for
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single-qubit gate operations, and (b) if radiation effects were indeed present, they would be well

under the ∼1% error threshold needed for correction under fault-tolerant schemes.

6.3.3 Heating Rate Measurements

In a final set of experiments, we quantify the effects of radiation on the trapped ion temperature.

Quantum entangling operations rely on cooling ions to near their ground state of motion [51], such

that their motion is quantized in a global harmonic oscillator potential. Since dissipative cooling is

forbidden during quantum gate operations, ion heating during the computation may compromise

the overall fidelity [65]. If this heating rate is exacerbated by the presence of radiation, either

through direct or induced collisions with background particles or by increased charge fluctuations

on nearby surfaces, two-qubit gate fidelities will be negatively affected.

Our measurements of the ion temperature begin by Doppler-cooling the ion to ≈ 0.5 mK. The

cooling laser is then turned off, and the ion is allowed to heat for 100 ms (much longer than the

typical gate time of an ion-trap quantum computer [99]). Finally, the temperature is re-measured

after 100 ms such that the heating rate may be determined. We then repeat this sequence in the

presence of all radioactive sources listed in Table 6.1.

Temperature measurements of a trapped ion are performed by observing its fluorescence as a

function of detuning δ from resonance (Appendix B). Such resonance lineshapes have two primary

contributions. The first is the power-broadened Lorentzian linewidth of the atom, given by Γ′ =

Γ
√
1 + s, where Γ = (2π)× 19.6 MHz is the natural linewidth of the Yb+ 369 nm transition, and

s = 0.3 is the laser saturation parameter used in these experiments. The second major contribution

to the linewidth comes from the Doppler-broadened temperature of the ions, which is a Gaussian

lineshape with standard deviation σ =
√
kBT/mλ2, where λ = 369 nm, kB is Boltzmann’s

constant, and T is the ion temperature.

Given these two contributions to the linewidth, the fluorescence profile is most appropriately fit

to a Voigt function, which is the convolution of a Gaussian lineshape G and Lorentzian lineshape
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Figure 6.3: (Insets): measured ion fluorescence vs. detuning from resonance. The width of the
lineshape determines the ion temperature. (Bottom) The extracted ion heating rates for various
radiation sources. No statistically significant deviation in the heating rate is observed compared to
the no-radiation case. The blue solid line indicates the results of the control (no radiation) trial;
blue dashed lines indicate 1 s.d. measurement uncertainty.

L:

V (δ;σ,Γ′) =

∫ ∞

−∞
G(δ′;σ)L(δ − δ′; Γ′)dδ′ (6.1)

By fitting this lineshape to the measured fluorescence as a function of laser detuning, the only free

parameter is the Gaussian width σ which uniquely determines the ion temperature T .

Characteristic lineshapes for the control case (no radiation) and for α, β, and γ sources are

shown in the top insets of Figure 6.3. For the no-radiation case, the linewidth yields a fitted

temperature of 25 mK after 100 ms of heating, corresponding to a heating rate of 0.25 K/s (6.0

quanta/ms). This lineshape is replicated as a blue dashed line in the other 3 inset panels but is

almost entirely covered by the radiation-present data. For each isotope and dose of radiation we

have fit a lineshape profile to extract a temperature and heating rate, plotting the summary of results

in the bottom panel of Figure 6.3.
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We observe no statistically significant increase in the heating rates when the ion trap is irradi-

ated with low-dose α, β, or γ-sources. Likewise, we observe no increase in the background gas

pressure at the 10−10 Torr level (which would increase the collisional heating rate), nor do we find

that the ion shifts position in the trap due to unwanted charge accumulation (which would increase

the electric field noise heating rate). We therefore conclude that much higher doses of radiation

may be necessary to cause measurable increases in ion heating rates and their associated entangling

gate infidelities.

6.4 Conclusion

This work measured the in-situ changes in ion-trap qubit lifetimes, coherence times, single-site

rotation fidelities, and motional heating rates when exposed to an array of laboratory-scale α,

β and γ radiation sources. Since the ion trap was in operation during these measurements, the

effects of radiation were tested on the ion qubit and surrounding trap hardware simultaneously. If

radiation-induced errors were found to exceed fault-tolerant thresholds, it would indicate serious

future challenges for the ability to perform large-scale quantum computations using unshielded

ion-trap-based hardware.

For the small-scale doses used in this study, we found no quantifiable degradation of ion-based

qubits in the presence of radiation, for any of the measurements performed. This finding is an

early first step for demonstrating the long-term prospects of using ion-based quantum information

systems in space or other extreme environments. However, exposure to higher-dose sources will be

required to fully quantify possible points of failure and guide future design requirements for system

shielding. In addition, future work should also more accurately quantify the single-qubit gate errors

using randomized benchmarking, and determine whether high-dose radiation induces correlated

ion-qubit errors which cannot be easily corrected using standard fault-tolerant protocols.
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CHAPTER 7

CHARACTERIZATION OF RADIAL-2D CRYSTALS IN A LINEAR PAUL TRAP

7.1 Section Overview

This chapter details an experimental study of 2D Coulomb crystals in the “radial-2D” phase of

a linear Paul trap [37], establishing radial-2D ion crystals as a robust experimental platform for

realizing a variety of theoretical proposals in quantum simulation and computation. Section 7.2

provides relevant background on experiments with Coulomb crystals and motivates the study. Sec-

tion 7.3 describes the trap geometry and identifies a radial-2D crystal as an ion lattice aligned

entirely with the radial plane, created by imposing a large ratio of axial to radial trapping poten-

tials. This section contrasts the radial-2D phase with the “lateral-2D” phase which can also be used

for quantum simulation.

Section 7.4 demonstrates, using arrays of up to 19 171Yb+ ions, that the structural phase bound-

aries of radial-2D crystals are well-described by the pseudopotential approximation, despite the

time-dependent ion positions driven by intrinsic micromotion. Section 7.5 uses heating rate mea-

surements to observe that micromotion-induced heating of the radial-2D crystal is confined to the

radial plane. Here we verify that the transverse motional modes, which are used in most ion-trap

quantum simulation schemes, are well-predictable numerically and remain decoupled and cold in

this geometry.

7.2 Coulomb Crystals

Over the last decade, one-dimensional (1D) ion chains in RF traps have seen remarkable success

in engineering high-fidelity quantum gates [101, 102] and simulating 1D quantum spin systems

[9]. If a comparable ability to control and probe two-dimensional (2D) crystals in RF traps can be

achieved, then the native 2D interactions between ions would provide an inherent advantage over
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1D systems for the quantum simulation of complex 2D materials [27, 26, 25, 23]. In addition,

2D arrays can hold larger numbers of qubits more efficiently than 1D strings, with a higher error

threshold for fault-tolerance [28, 29], and may simplify preparations of 2D cluster states for one-

way quantum computing [30, 31]. Already, 2D arrays of ions in Penning traps have led to successes

in simulating and studying quantum spin models [19, 32], though the fast crystal rotation in such

traps poses a significant challenge to individual ion addressing.

Achieving the desired level of control in Coulomb crystals has typically required an initial char-

acterization of ion positions, structural phases, normal mode frequencies, and sources of crystal

heating. In this chapter, we report the experimental characterization and coherent control of radial-

2D crystals in a linear Paul trap. We map the full range of structural phases for Coulomb crystals as

a function of ion number using arrays of up to 19 ions, and we investigate the transverse vibrational

mode spectrum in the radial-2D phase. Next, we measure the time-dependent temperature of the

crystal as it experiences micromotion-induced heating, and we extract the center-of-mass heating

rate along the micromotion-free direction perpendicular to the radial plane. Finally, we discuss the

implications for future quantum information processing experiments.

7.3 Two-Dimensional Ion Crystals

7.3.1 Lateral-2D Crystals

In RF traps, there are two distinct methods of orienting an ion lattice: the lateral-2D configuration

and the radial-2D configuration. The first orientation is an extension of the well-known “zig-zag”

phase, spanning a 2D plane defined by one radial and one axial trap direction. In this case, rf-

driven micromotion is present along one of the in-plane directions as well as transverse to the

plane. Ion crystals in this phase, which we refer to as the “lateral-2D” geometry, were first realized

in RF traps over 20 years ago [103]. More recent work has measured the vibrational spectrum of

lateral-2D crystals [104], and further experiments have demonstrated coherent operations in this

regime [105].
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7.3.2 Radial-2D Crystals

In the “radial-2D” phase, the longitudinal in-plane modes lie along the radial direction and experi-

ence micromotion, while the transverse modes lie along the axial direction and remain micromotion-

free. This radial-2D phase has been the primary interest for most theoretical studies of 2D ion crys-

tals, which have made predictions of crystal stability, lifetimes, heating rates, phase boundaries,

and gate fidelities [27, 26, 25, 106, 107, 28, 29]. Prior to 2021, however, experiments performed

with radial-2D crystals had only demonstrated Doppler cooling [108] and probed the radial-2D

phase boundary with 3-4 ions [104].

Since lateral-2D and radial-2D crystals have different relative orientations of micromotion with

respect to the crystal plane, studies of the structural and dynamical properties of lateral-2D crystals

are not directly applicable to the radial-2D regime. There also may be differences in the degree to

which micromotion may obscure site-specific imaging resolution, or worse, lead to fast absorption

of energy from the RF drive [109, 110, 106] and melting of the ion lattice [111].

7.4 Experimental Setup

Experiments are performed with 171Yb+ ions confined in the four-rod linear Paul trap described in

Section 3.2.1. A slight asymmetry is introduced between the radial x̂- and ŷ- directions to prevent

a zero-frequency rotational mode; for specificity, we define the radial secular trap frequency as

ωr ≡ Max[ωx, ωy]. The RF voltage V0 is held constant at 340 V throughout experiments, yielding

a Mathieu parameter of q = 0.10, while the DC voltage U0 is varied between 0.012− 30 V. As the

DC voltage is raised, the aspect ratio α = ωz/ωr increases. At large values of α, ions are squeezed

into the xy plane and self-assemble into a triangular lattice.

7.4.1 Raman Spectrosocpy

Raman beam spectroscopy is used for axial mode determination and axial heating rate measure-

ments. The two Raman beams have a frequency difference near the 171Yb+ hyperfine ground state
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Figure 7.1: (a) Raman beam configuration: two 355 nm Raman beams oriented in the yz plane
enter from the front of the trap at 53 degree angles to the left and right of the y axis, creating a
resultant k-vector along z. (b) RF is injected onto a DC endcap via a bias tee. Scanning the RF
frequency until it is on resonance with the ion’s center of mass mode creates a dip in the ion’s
fluorescence profile, allowing us to find a secular trap frequency accurate to within 1 kHz.

splitting ωhf , with the precise frequencies, amplitudes, and relative phase controlled by AOMs,

as described in Chapter 3. Two 355 nm Raman beams oriented in the yz plane enter from the

front of the trap, at 53 degree angles to the left and right of the y axis respectively as shown in

Figure 7.1(a). In the measurements presented in this chapter, for which ωz = 2π × 900 kHz, this

leads to a dimensionless Lamb-Dicke parameter

η = 2 sin(53◦)
2π

λ

√
ℏ

2mωz

= 0.16 (7.1)

and a resultant wavevector k⃗ = k⃗2 − k⃗1 along the axial (ẑ) direction. For a radial-2D crystal,

oriented in the xy plane, this geometry results in strong coupling to the axial (transverse) motional

modes and suppression of coupling to the radial (in-plane) modes.
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7.4.2 Secular Frequency Determination

Since our Raman beams don’t couple to the radial modes, we use RF injection to measure secular

frequencies along all three axes [112]. To measure along the ẑ axis, we attach an RF bias tee into

one of our DC lines and use a signal generator to inject RF jointly with the DC endcap voltage,

as shown in Figure 7.1(b). Then we scan the RF frequency until it is on resonance with the ion’s

center of mass mode and heats the ion, resulting in a dip in collected fluorescence accurate to

within a kHz. A second bias tee, in line with a compensation rod, injects RF equally along the

x̂ and ŷ trap directions and is used to perform identical frequency measurements along the radial

directions.

7.4.3 Note on Micromotion Amplitude

Critical measurements are performed with crystals of 7, 13, and 19 ions. As the number of ions

N grows larger, the outer radius of the crystal scales as ∼ d
√
N/2 for ions separated by distance

d. The maximum micromotion amplitude therefore also scales with the square-root of ion number,

|r⃗1|max ∼ qd
√
N/4 [26]. For a seven-ion crystal with our trap parameters, the outermost ions

are approximately 6 µm from the trap center, giving a micromotion amplitude of ≈ 300 nm. For

the 13-ion crystals, we find micromotion amplitudes |r⃗1| ≈ 430 nm, and for the largest examined

crystal of 19 ions, we find |r⃗1| ≈ 500 nm. In each case, we note that the micromotion amplitude is

small compared to the 5 µm inter-ion spacing of the crystal.

7.5 Phase Boundaries and Transverse Mode Spectrum

7.5.1 Structural Phase Boundaries

When the aspect ratio α ≡ ωz/ωr of the trap’s axial and radial secular frequencies is small, ions

form a 1D chain along the trap’s central axis (Figure 7.2(a)). As α is increased (by increasing

the axial frequency), the ions pass through a zig-zag phase (Figure 7.2(b)) and a number of three-

dimensional (3D) spheroidal configurations (Figure 7.2(c)), before forming a radial-2D crystal.
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Figure 7.2: Crystals of 13 ions are shown for increasing values of the trap aspect ratio α ≡ ωz/ωr.
The structure transforms from a 1D chain (a) to zig-zag (b) and 3D spheroidal phases (c), before
ending in a 2D triangular lattice in the radial plane (d). Crosses show the ion positions predicted
by the pseudopotential approximation. Panel (e) shows the same calculation as the crosses in
(d), rotated to better display the lattice structure. Simulated ion sizes in (e) correspond to the
diffraction-limited spot size of our imaging optics and include effects from rf-driven micromotion.

This last configuration occurs in Figure 7.2(d), where the single plane of ions is viewed on-edge.

Figure 7.2(e) simulates the same crystal rotated perpendicularly to the plane. For these higher-α

phases, ions that lie away from the trap’s central axis are subject to rf-driven micromotion, the

amplitude of which increases linearly with an ion’s radial coordinate. Though the equilibrium

ion positions are no longer stationary due to micromotion, the observed time-averaged positions

closely correspond to predictions obtained from pseudopotential theory calculations (red crosses

in Figure 7.2).

Varying the axial confinement over such a large range enables the precise experimental de-

termination of structural phase transition boundaries at both small and large α, as shown in Fig-

ure 7.3(a). Ions starting in a 1D chain exhibit a sudden transition to a zig-zag configuration at a

critical value of α dependent on particle number N . The 1D to zig-zag transition only occurs due

to non-degenerate radial frequencies and is quite close to the zig-zag to 3D boundary for our near-

degenerate trap. Numerous unmapped subtransitions occur within the 3D Coulomb crystal phase;
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the richness of 3D geometries that arises with even 3-4 ions is detailed in [104]. Since micromotion

plays no role in this transition, numerical estimates of the phase boundary are straightforward [40,

113, 114]. The predicted transition

α =
1

.73N .86 (7.2)

has been previously verified with up to 10 ions [115]. Our measurements confirm this behav-

ior for up to 19 ions and are compared to the theoretical prediction (lowest blue dashed line) in

Figure 7.3(a).

For the 3D to radial-2D transition, the presence of micromotion complicates theoretical esti-

mates of the phase boundary. One calculation, shown as the upper blue dashed line in Figure 7.3(a),

predicts the phase transition at

α = (2.264N).25 (7.3)

using only the time-averaged pseudopotential [40]. A more complete description, which accounts

for the fully-coupled and time-dependent dynamics of the ion positions, is shown as the solid red

line in Figure 7.3(a). Here, a Floquet-Lyapunov (FL) transformation, detailed in Appendix A, is

invoked to convert the periodic, time-dependent problem to a time-independent formulation and

find the decoupled modes of oscillation [117, 116].

A third analysis of this phase boundary, shown as the orange dotted line in Figure 7.3(a), sug-

gests the existence of a micromotion-destabilized region due to a downward shift in transverse

mode frequencies [28]. Our measurements of the 3D to radial-2D phase boundary in Figure 7.3(a)

confirm the validity of the FL approach in this regime, as opposed to the micromotion-destabilized

theory. In addition, our data demonstrate that the pseudopotential approach provides a close ap-

proximation of the transition for up to 19 ions, even in the presence of increasing radial micromo-

tion with larger crystal sizes.
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Figure 7.3: (a) Phase diagram of ion Coulomb crystals in a linear Paul trap. Data show the mea-
sured α that separate the 1D/zig-zag and 3D/radial-2D phases as a function of ion number. Three
theory predictions (with no adjustable parameters) are plotted for comparison. Blue dashed, pseu-
dopotential [40]; Red solid, Floquet-Lyapunov [116]; Orange dotted, micromotion-destabilized
[28]. (b) Axial mode spectrum for 7 ions in a radial-2D crystal at α = 2. Vertical lines show
predicted mode frequencies. Blue dashed, pseudopotential; Red solid, Floquet-Lyapunov.
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7.5.2 Axial Mode Spectrum

As a further investigation of micromotion effects, we measure the vibrational spectrum of a 7-ion

crystal deep in the radial-2D regime. Global, far-detuned Raman transitions at 355 nm allow for

spin-motion coupling and coherent excitation of the crystal modes [118]. In Figure 7.3(b), we

compare the measured axial mode frequency spectrum to frequencies calculated using the pseu-

dopoential (blue dashed) and FL (red solid) approaches. These methods largely agree with the

measured data and with each other to within 2 kHz, though the pseudopotential approximation

mispredicts the lowest frequency mode by over 10 kHz. Nevertheless, the pseudopotential approx-

imation may still provide reasonable accuracy for many experiments. For instance, in quantum

simulations of spin-lattice Hamiltonians [9], the pseudopotential approach correctly predicts the

2D-Ising interaction range to within 0.5% for up to 19 ions.

7.6 Micromotion-Induced Heating

The presence of micromotion may have strong effects on crystal lifetimes and temperatures. When

multiple ions are confined in an RF trap, ion-ion collisions can transfer micromotion energy into

secular kinetic energy and result in rapid RF heating [109, 110]. As the collision rate increases,

ion motion becomes less correlated, and a sudden jump in temperature occurs at an inflection point

which corresponds to a ‘melting’ of the crystal [111]. This RF heating mechanism is expected

to dominate over other sources of noise, such as electric field fluctuations [65] and collisions with

background gas molecules [106]. Though molecular dynamics simulations indicate that large num-

bers of ions could be maintained for long times without continuous cooling [106], this presumes

the existence of ideal traps; no prior studies have established the lifetime and heating rates of

radial-2D crystals in experimentally-realizable systems.
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7.6.1 Crystal Lifetime Measurements

To begin investigating the effects of micromotion-induced heating, we measure the trapping life-

times of radial-2D crystals in the absence of active cooling. After the ions are Doppler cooled, the

cooling beams are switched off and the ions are allowed to heat for a specified amount of time. If

the crystal melts during this period, one or more ions may escape the trap confining potential or

remain uncooled when the Doppler beams are re-applied. We define the trapping lifetime as the

time for which all ions remain in the crystal with 1/e probability, and find that it is in excess of 5

seconds for lattices of up to 19 ions. This lifetime is exceptionally long compared to the typical

∼millisecond timescales of quantum computation or simulation experiments [100, 99].

7.6.2 Voigt Fluorescence Profiles

The overall 3D temperature of an ion crystal, related to thermal energy by E = 3
2
kBT , can be

determined by measuring fluorescence as a function of the cooling laser’s detuning. The ion reso-

nance, which is described by a Voigt distribution (Appendix B), is a convolution of Lorentzian and

Gaussian profiles. The Lorentzian contribution comes from the power-broadened natural linewidth

∆νL = Γ
√
1 + s = 2π × 22 MHz, (7.4)

where Γ = 2π×19.6 MHz is the natural linewidth of the 171Yb+ 369.5 nm 2S1/2 →2P1/2 transition

and s = 0.3 is the laser saturation parameter. The Gaussian contribution results from Doppler

broadening, with a full-width at half-maximum of

∆νG = 2

√
(2 ln 2)kB

mλ2

√
Tr cos

2 θ + Tz sin
2 θ. (7.5)

This expression arises since our fluorescence beam intersects the crystal plane at an angle (θ =

45◦) and is therefore sensitive to both the radial and axial temperatures Tr and Tz. Later we will

show that keeping independent radial and axial temperatures is well-justified, and that the axial
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Figure 7.4: Voigt fluorescence lineshapes of a 7 ion crystal exposed to RF heating are shown for
heating times of (a) 0 ms, (b) 80 ms, and (c) 160 ms. The lineshape widens at later times due
to increasing contributions from Doppler broadening. The 0 ms profile (3 mK temperature) is
indicated by a dashed blue line in panels (b) and (c) for reference. (d) A radial heating rate of
Ṫr = 1.04± .08 K/s is extracted from Voigt profile fits to ion fluorescence data.

temperature adds negligible contribution to the overall linewidth.

When the crystal is Doppler cooled to 3 mK (as confirmed with sideband Raman spectroscopy),

the Doppler width ∆νG is 1 MHz, which has no noticeable effect on the fluorescence profile (Fig-

ure 7.4(a)). However, if the cooling beams are extinguished and the crystal acquires radial energy

through RF heating, the fluorescence profile spreads due to an increase in thermal motion (Fig-

ure 7.4(b,c)). To extract the radial crystal temperature, we fit the measured Voigt fluorescence pro-

file to a Lorentzian of constant width ∆νL and a Gaussian of variable width ∆νG, weighting point
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averages by 1/variance. By performing many temperature measurements at increasing heating

times, as shown in Figure 7.4(d), we determined the radial heating rate to be Ṫr = 1.04± .08 K/s.

Previous work has predicted nonlinear heating near the melting point of Coulomb crystals; the lin-

ear nature of our data implies that short time scales, large ion masses, and low initial temperatures

keep crystals far from this limit [111, 110].

7.6.3 Axial Heating Rate

To look for evidence of heat transfer between the radial and axial directions, we measure the

heating rate of the axial center-of-mass (COM) mode using resolved sideband spectroscopy [50].

Following Doppler cooling, our 355 nm Raman beams are used to sideband cool the axial COM

mode to n̄ ≤ 2.5 as well as to induce stimulated Raman transitions at the axial COM red and

blue sideband frequencies, ωhf ±ωz. Coherent oscillations of these sidebands result in profiles like

those shown in Figure 7.5(a), which are performed on a radial 2D crystal of 7 ions immediately

after sideband cooling. The number of quanta in the axial COM mode is determined by taking the

ratio r of red to blue sideband transition probability amplitudes (Figure 7.5(a)) for several different

sideband drive times and finding the mean occupation number

n̄ =
r

1− r
. (7.6)

The ratio method is further described in Appendix C. Finally, the axial COM heating rate ˙̄n is

determined by leaving the crystal uncooled for increasing time periods and repeating the sideband

measurements.

We compare the axial COM heating rate of a single ion to that of a radial-2D crystal with

7 ions, under the same trapping conditions (ωz ≈ 2π × 900 kHz and α = 2). As shown in Fig-

ure 7.5(b), we find a single-ion ambient heating rate of ˙̄n = 100 ± 20 motional quanta/s. This

measurement, which corresponds to temperature heating rate Ṫz = 0.004± 0.001 K/s and a spec-

tral density of electric field noise SE = 2.65× 10−12 V2m−2Hz−1, is comparable to heating rates
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Figure 7.5: (a) A comparison of red (solid) and blue (dashed) sideband probability amplitudes are
shown for a 7 ion crystal immediately following sideband cooling. The heating rate of the axial
(transverse) COM mode for a single ion (b) is comparable to that of a 7 ion crystal (c). In both
cases, the absolute heating rate is low compared to traps of similar size.

observed in other room-temperature RF traps of similar size [65]. We then repeat these measure-

ments for the axial COM mode of a 7-ion crystal, finding a heating rate of ˙̄n = 125±75 quanta/sec

(Figure 7.5(c)). In temperature units, this rate is over 200 times smaller than the measured radial

heating (Figure 7.4) and justifies our earlier assumption of non-equilibration between axial and

radial directions.

Our measurements with one and seven ions further suggest that electric field noise is not the
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dominant heating mechanism in our trap. This is because electric field fluctuations, which are

largely correlated across the ions, are expected to preferentially heat the COM mode and scale

linearly with ion number [65]. Our results instead indicate largely uncorrelated noise, which has

likewise been observed in Penning traps using the analog of a radial-2D crystal [119]. In the

limit of perfectly uncorrelated noise, we would expect other axial modes (indexed by k) to exhibit

heating rates ˙̄n(k) = (ωCOM/ωk) ˙̄nCOM [65], giving at worst an estimated ∼ 50% larger heating rate

for the lowest-frequency (zig-zag) axial mode. Whether the noise in our system is correlated or

not, our observations of objectively low axial temperatures in the presence of rapid radial heating

demonstrate that the axial modes of a radial-2D crystal remain cold, isolated, and well-suited for

quantum simulation experiments.

7.7 Conclusion

The experiments described in this chapter establish that micromotion effects on radial-2D crystals

can be largely constrained to the radial plane, with phase boundaries and axial vibrational spectra

well-predicted by micromotion-free pseudopotential theory and only the in-plane radial degrees of

freedom experiencing micromotion-induced heating. In contrast, the axial (transverse) degrees of

freedom can remain decoupled and cold. Furthermore, the ∼5-µm ion-ion spacings enacted by this

geometry would enable fast ion-ion coupling rates while allowing for future individual addressing

with low cross-talk.

This demonstration of stable, isolated, and low-noise axial modes establishes radial-2D crys-

tals in linear Paul traps as a realistic platform for implementing several proposals in quantum

simulation [26, 27]. This system is especially well-suited for studies of highly-frustrated quantum

spin models [23, 26, 25, 120], since long-range antiferromagnetic interactions are routinely im-

plemented between co-trapped ions [9], and since ions in the radial-2D phase self-assemble into a

triangular lattice.

The realization of such proposals demands several developments. First, the trap used for this

study did not facilitate site-resolved detection of the ion lattice. Next, methods to cool radial-2D
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crystals near the motional ground-state should be applied [121, 122]. Evidence of entanglement

generation via Mølmer-Sørensen interactions [51] (or equivalent) should then be demonstrated

before implementing full spin-lattice simulations. Finally, the possibility of maintaining 100+ ions

in the radial-2D crystal phase for long times [106], and the limits of crystal stability in the presence

of RF heating, should be experimentally explored as the system is scaled to larger sizes.
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CHAPTER 8

AN OPEN-ENDCAP BLADE TRAP FOR RADIAL-2D ION CRYSTALS

8.1 Section Overview

In Ch. 7, we studied radial-2D ion crystals, for which the out-of-plane modes are co-aligned with

the trap axis and remain micromotion-free. These crystals were found to have long lifetimes, well-

characterized vibrational modes, and low heating rates in the out-of-plane (transverse) direction,

validating their use for quantum simulation experiments. However, the rod-style Paul trap used

to confine the crystals blocked optical access along the trap axis perpendicular to the radial plane,

such that it was only possible to view the radial-2D crystals from the side. In order to achieve full

site-resolved imaging and enable the possibility of individual addressing for this crystal geometry,

it is necessary to develop a Paul trap with open line-of-sight along its central axis.

In this chapter, we describe the development of an open-endcap linear RF trap that is capable

of confining and resolving large numbers of ions in the radial-2D crystal phase. We begin in

Section 8.2 with the design requirements for trapping and imaging radial-2D crystals as well as a

simulation of our trap design. In Section 8.3, we discuss the trap fabrication and assembly while

Section 8.4 covers the RF and DC electronics and voltage control. We demonstrate and characterize

the performance of the open-endcap trap in Section 8.5, followed by concluding remarks in Section

8.6.

8.2 Open-Endcap Trap Design

8.2.1 Linear Paul Traps

Linear Paul traps are capable of confining ion crystals in one, two, or three dimensions [37, 104],

but require significantly different parameters (such as trap sizes and applied voltages) to achieve

each of these geometries. Thus, trap designs that have been optimized for holding 1D chains may
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prove incapable of (or impractical for) confining ions in the radial-2D phase. In this section, we

review the linear Paul trap and consider the requirements for the stable trapping of radial-2D ion

crystals while ensuring sufficient optical access for site-resolved imaging.

The time-dependent potential provided by a linear quadrupole RF trap can be written as [50]

Φ(r⃗, t) = ΦDC(r⃗) + Φrf (r⃗, t)

=
κU0

2z20
(2z2 − χx2 − γy2) +

V0 cos(Ωtt)

2d20
(x2 − y2)

(8.1)

where U0 is the DC voltage, V0 is the amplitude of an RF voltage with oscillation frequency Ωt, d0

and z0 are the radial and axial trap dimensions, and κ is a geometric factor of order one determined

by the trap electrodes. In Equation 8.1, we have also introduced the radial anisotropic factors χ and

γ, which we experimentally choose to deviate slightly from one. This small asymmetry breaks the

degeneracy of the x and y radial axes, thereby preventing radial-2D crystals from rotating freely in

the xy plane.

Near the center of the trap, the potential can be approximated as a harmonic pseudopotential

well

Φ(r⃗) =
1

2
m

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (8.2)

where the secular resonance frequencies in the radial and axial directions can be written as

ωx =

√
Q

m

(
qV0

4d20
− κχU0

z20

)
; ωy =

√
Q

m

(
qV0

4d20
− κγU0

z20

)
, (8.3)

ωz =

√
Q

m

2κU0

z20
(8.4)

with ion charge Q, ion mass m, and the Mathieu “q” parameter q = 2QV0/md20Ω
2
t . Within this

pseudopotential framework, we can account for RF driven micromotion by expanding the ions’

motion about their equilibrium positions [50, 29]. To leading order, the coordinates of each ion
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varies in time as

r⃗(t) = r⃗(0) + r⃗(1) cos(Ωtt) + r⃗(2) cos(2Ωtt) + ... (8.5)

where ⃗
r(0) is the time-averaged ion position, ⃗

r(1) = (qxx̂ + qyŷ + qz ẑ)r
(0)/2), and ⃗

r(2) = (q2xx̂ +

q2y ŷ + q2z ẑ)r
(0)/32 are the amplitudes of the first two micromotion terms.

8.2.2 Design Considerations

Under the pseudopotential approximation, the criteria for achieving a radial-2D ion crystal is [40]

ωz/ωr > (2.264N)
1
4 . (8.6)

The primary design challenge for trapping crystals in the radial-2D phase is to choose the appro-

priate trap dimensions, voltages, and frequencies that ensure Equation 8.6 is strongly obeyed for

large numbers of ions, while keeping all parameters experimentally reasonable.

Several principles guide the selection of optimal trap parameters for radial-2D crystals. Satis-

fying Equation 8.6 is most easily accomplished when ωz is large, which requires large U0 and/or

small z0. Yet, large U0 and small z0 have a deconfining effect in the radial direction: if the second

term under the square root in Equation 8.3 grows too large, the ions will escape. To counter this

effect, V0 must also be moderately large while keeping d0 small. Furthermore, since it is desirable

to have small micromotion amplitudes, the trap drive frequency Ωt should be made large to keep

the Mathieu q parameter small. Overall, these observations lead to a set of self-consistent design

choices: small trap dimensions d0 and z0, large DC voltage U0, moderately large RF voltage V0,

and relatively large trap frequency Ωt. For specificity, the experimental demonstration presented

in Section 5 used the parameters d0 = 230 m, z0 = 200 m, U0 = 14.4 V, V0 = 150V , and

Ωt = 2π × 27.51 MHz.

In addition to selecting the above parameters, we also choose to implement a segment-blade

design for our linear Paul trap [123, 124]. We consider three advantages of this trap geometry: 1)

the open endcaps of the blades ensure that imaging is possible perpendicular to 2D ion plane; 2)
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the trap dimensions d0 and z0 can be made quite small to avoid unreasonably high voltages V0 and

U0; 3) the blades can be designed such that they do not compromise the numerical aperture (NA)

of the imaging optics. In our trap, we have angled the edges of the RF and DC blades to ensure that

there are no obstructions to light collection using a NA = 0.28 imaging objective (Special Optics

54-17-29-369nm).

Images of our blade-trap design are shown in Figure 8.1. The center of the trap assembly is

located 11.5 mm away the vacuum viewport to allow for a large solid angle for imaging. In this

design, the DC blades are segmented into two endcaps plus one central electrode (Figure 8.1c); the

RF blades are continuous and of the same total length as the three DC blade segments, providing

translational symmetry for the RF potential. All blades (including the rf) can be DC biased to

allow for translation along all 3 principal axes. Finally, two compensation electrodes are mounted

above and below the trap to provide additional voltage compensation along the vertical/horizontal

directions.

8.2.3 Finite-Element Simulations

Following the discussion above, trapping ions in the radial-2D crystal phase relies on a delicate

balance between the trap geometry and the applied voltages U0 and V0. Equation 8.3 shows that

this balance also relies on the value of the geometric factor κ. Since the blade-style electrodes

are not perfect hyperbolas (for which κ = 1), it is necessary to perform numeric simulations to

determine the trap secular frequencies and ensure stable trapping in the radial-2D phase.

We numerically calculate the potentials within the trap using finite-element simulations. First,

we calculate the effective potentials ϕDC(r⃗) and ϕrf (r⃗) which arise from the application of 1 Volt

to each individual electrode (with the others grounded). Using this set of potential basis functions,

the total potential near the center of our trap can be written in the form Φtot(r⃗, t) = Φrf (r⃗, t) +

ΦDC(r⃗), where the RF contribution is given by:
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Figure 8.1: Assembled blade trap mounted in its vacuum chamber, taken along the imaging direc-
tion. The blades are mounted on insulating Macor plates, which are fastened to a stainless steel
frame and support structure (connected to ground). 171Yb and 174Yb ovens are placed to the left of
the trap. (b) Sketch of the blade configuration near the trap center. RF and segmented DC blades
provide the trap potentials; two rod-style electrodes provide compensation in the vertical/horizontal
directions. (c) Image of an RF blade and segmented DC blade mounted on their Macor supports.
Blades are machined from a 500 µm-thick piece of solid tungsten and polished after machining.
On-chip capacitors (800 pF) on each DC segment provide filtering of RF pickup.
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Φrf (r⃗, t) = V0 cos(Ωtt)ϕrf (r⃗)

= V0 cos(Ωtt)(η
x
rfx

2 + ηyrfy
2 + ηzrfz

2),

(8.7)

and the DC component is

ΦDC(r⃗) = U0ϕDC(r⃗)

= U0(η
x
DCx

2 + ηyDCy
2 + ηzDCz

2),

(8.8)

where the factors ηα in Equation 8.7 and Equation 8.8 indicate the curvatures in the α direction

for the RF and DC potentials. Comparing these equations to the form of Equation 8.1, we extract

the geometric factor κ = z20η
z
DC , as well as the anisotropic factors χ = −2z20η

x
DC/κ and γ =

−2z20η
y
DC/κ. The resulting trap potential, along with its associated electric field, is shown in

Figure 8.2(a).

For a single trapped ion, the action of this simulated potential Φ(r⃗, t) gives rise to the time

evolution described by the Mathieu equations

d2ui

dζ2
+ ai − 2qi cos(2ζ)]ui = 0 (8.9)

where i ϵ {x, y, z} and the dimensionless parameters ζ = Ωtt/2, ai = 8QU0η
i
DC/mΩ2

t , qi = 4QV i
0 rf/mΩ2

t .

Under the pseudopotential approximation, which is valid when ai < q2i ≪ 1, the ion secular fre-

quencies are then defined by ωi = βiΩt/2, where βi ≈
√

ai + q2i /2 are the characteristic exponents

of the Mathieu equation [28, 50].

Having extracted the secular trap frequencies from the finite-element simulation, we can apply

the harmonic pseudopotential approximation to estimate the ion positions for large radial-2D crys-

tals. For N trapped ions, the total potential energy depends on both the trapping potential as well
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Figure 8.2: (a) The radial trapping potential for our open-endcap geometry, calculated using finite-
element simulation methods. The two radial frequencies are made slightly non-degenerate to pre-
vent rotation of the ion crystal. The associated electric field lines are shown in black. (b) Simu-
lated equilibrium ion positions in for 17 174Yb+ ions in the potential of (a). Ions away from the
central axes experience driven micromotion, whose amplitude can be calculated using the Floquet-
Lyapunov transformation. For the 17-ion crystal, these amplitudes (shown as small arrows in (b))
are predicted to be small compared to the inter-ion spacing.

as the Coulomb interaction between every pair of ions:

V (x, y, z) =
N∑

n=1

1

2
m(ω2

xx
2
i + ω2

yy
2
i + ω2

zz
2
i )

+
Q2

4πϵ0

N∑
i ̸=j

N∑
j

1√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2
.

The equilibrium position of each ion can be found by simulating the full equations of motion

with an added friction (cooling) term [28]. The results of one such calculation, for 17 ions, are

shown in Figure 8.2(b). After finding the equilibrium positions, the vibrational modes and micro-

motion trajectory of each ion can be calculated using the Floquet–Lyapunov transformation [117,

116] which is discussed in Appendix A. The small arrows in Figure 8.2(b) show the resulting mi-

cromotion amplitude for the off-axis ions, which to first order scales linearly as the ions’ radial

distance from the trap center.
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8.3 Trap Fabrication

8.3.1 Material Selection

Micro-fabricated, gold-coated blades are a popular choice for constructing ion trap electrodes [125,

126]. However, the gold coating on such electrodes are often susceptible to damage from resistive

heating or from large electric fields which arise during operation of the trap [127]. For instance,

tests in our lab demonstrated that the large RF voltages required for creating the radial-2D crystal

phase quickly led to melting and evaporation of the gold layer. To ensure more robust performance

in the presence of large RF voltages, we fabricated our electrodes from solid tungsten. Tungsten

is an easily available, strong, and low resistivity metal that has been used in a variety of earlier RF

traps [128, 129, 130, 131, 132]. Compared with more common metals (such as stainless steel), we

consider tungsten advantageous for our trap since its low resistivity will limit blade heating and

any associated vacuum pressure increases when large RF voltages are applied.

8.3.2 Blade Fabrication and Assembly

The blade electrodes are fabricated from a sheet of 500 µm-thick pure tungsten using a wire-EDM

(Electrical Discharge Machining) process. This technique allows for fairly complex electrode

geometries (such as the segmented DC blades) to be machined to within ∼ 10 µm tolerances.

In our design, the three DC blade segments are each 300 µm long and separated by a 50 µm gap;

the RF blades have a total length of 1 mm. The final processed tip thickness is 100 µm for all

blades; however, for reasons explained below, we target an initial 300 µm tip thickness during

wire-EDM machining.

For sintered materials like tungsten, the exposed surface following wire-EDM processing can

be markedly rough. This can be problematic for trapped-ion systems, since there is evidence that

large surface roughness could significantly affect motional heating rates [133, 134, 135, 65]. In

addition, rough electrode surfaces could increase unwanted laser beam reflections, increasing the

background light collected by the imaging optics. Figure 8.3a shows an image of a blade electrode

134



Figure 8.3: a) Image of a blade electrode directly after wire-EDM machining. (b) Using a stylus
profilometer near the tip of the blade, we characterize the average surface roughness Ra. (c) After
electropolishing and hand polishing, the blade has a smooth mirror-like surface. (d) The surface
roughness of the polished blade is reduced by nearly three orders of magnitude compared to the
unprocessed blade.
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just after wire-EDM machining. Using a stylus profilometer (Bruker DektakXT), we characterized

the arithmetic average surface roughness Ra of this blade to be approximately 5 µm over a 1 mm

region near the tip (Figure 8.3b).

To smooth the tungsten blade surface after machining, we implement a two-stage polishing

process. First, we use self-terminated electrochemical etching to remove the largest surface fea-

tures [136]. The blade is immersed into sodium hydroxide solution (NaOH, 400 ml of 2 mol/L)

and connected to the cathode of a power supply (10 V, 1.5 A) for 2 minutes of etching. This process

lowers the surface roughness to Ra < 1µm and reduces the tip thickness from 300µm to ∼ 100µm.

Following this electropolishing stage, the electrodes are hand-polished using 3 µm, 1 µm, and 0.3

µm stages of Aluminum Oxide polishing paper. Figure 8.3c shows an image of the blade electrode

after processing. As measured by a profilometer, the surface roughness is reduced from Ra ≈ 5µm

to Ra ≈ 8 nm after these polishing processes (Figure 8.3d).

Following machining and polishing of the blades, the trap is assembled in a clean room to avoid

dust contamination. As shown in Figure 8.1a, the blades are mounted on Macor plates fastened to

trapezoidal stainless-steel blocks. The DC segments are handaligned under a microscope to keep

a 50 µm gap between segments, and the RF blade is mounted parallel to the DC segments with a

gap of 280 µm (Figure 8.1c). Two assembled triangular blocks are placed in a stainless steel frame

in a vertex-to-vertex orientation, with a vertical gap between blades of 300 µm. All DC electrodes

are mechanically connected to gold-plated lugs, which are crimped to Kapton-coated wire and

connected to a Sub-C 9-pin feedthrough. The RF blades and atomic ovens connect with separate

high-power electrical feedthroughs. To reach UHV pressures, the vacuum system was initially

pumped to 10−7 Torr, then baked for two weeks at 200◦ C; the final pressure of the chamber at

room temperature is below 10−11 Torr.
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8.4 Electronics and Voltage Control

8.4.1 Helical Resonator

Ions confined by a Paul trap require a stable, high voltage, and low noise RF potential. A helical

resonator allows impedance matching between the RF source and the ion trap, amplifying voltage

while filtering noise injected into the system [54]. We opt to build a two-coil resonator, since this

allows for independent DC biasing of the RF blades so that the trap may be compensated in all

directions1. In order to construct a resonator to operate at a desired frequency, we first measure

the capacitance of the connection wire and ion trap Ctrap at the trap feedthrough. Once these are

known, we build the shield and helical resonator coils following the procedure outlined in [54]. A

cross-sectional drawing of the two-coil resonator is shown in Figure 8.4a along with our chosen

design parameters. Under these conditions, the resulting resonant frequency is Ωt = 2π × 27.51

MHz when connected to our blade trap.

Due to our implementation of a two-coil resonator, we designed the circuit shown in Figure 8.4b

to appropriately sample the transmitted RF voltage. To begin, we use two capacitors C1 and C2

(KEMET, SMD Comm X5R series, 10 µF) to bridge between the resonator’s two outputs Vrf1 and

Vrf2. With this configuration, we can accomplish two goals. First, combining the two RF outputs

with capacitors balances any potential phase differences caused by mechanical asymmetry of the

resonator. Second, the potential at the point S is the average value of the outputs which can be

used as a voltage probing point for sampling. A capacitive divider connected to point S is used

to scale down the high rf-voltage for sampling. The divider consists of two high voltage-tolerance

capacitors, C3 (AVX Corporation, SQ series, 0.2 µF) and C4 (AVX Corporation, UQ series, 20

µF). This combination picks off 1% of the high voltage signal (down to the ∼ 1 V range) so that

the later rectifier design requirements are less stringent. We measured the RF pickup signal as a

1At this time, the two-coil resonator has been removed from the system due to its introduction of unexplained
motional modes in the axial frequency spectrum. It has been replaced with a single-coil can of the same resonant
frequency. Though the single-coil resonator does not allow independent biasing of the RF blades, we are still able to
compensate in all directions due to the rod-style electrodes located above and below the trap. Though we may or may
not choose to re-implement a double-coil resonator design in the future, I have chosen to leave the relevant section
(8.4.1 of this thesis) of [38] unedited.
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Figure 8.4: (a) Sketch of the two-coil resonator design. The shield diameter D = 102 mm, shield
height B = 101 mm, coil diameter d = 64 mm, coil height b = 68 mm, winding pitch τ = 10
mm, and the coil wire diameter d0 = 2.5 mm provides a Ωt = 2π × 27.51 MHz drive frequency
when connected to a trap with capacitance Ctrap = 10 pF. (b) Schematics of the voltage sampler
and capacitive divider. C1 and C2 are placed across the outputs to balance Vrf1 and Vrf2; C3 and
C4 form the capacitive divider. C1, C2, C3 and C4 are on the same circuit board housed within
the resonator cylinder. The voltage-reduced sampling signal is sent out through a BNC connector.
The rectifier circuit is right next to the BNC connector to avoid electromagnetic interference. (c)
We measure a resonator Q factor of ≈ 100 by sampling the output of the capacitive divider as a
function of RF input frequency.

function of input RF frequency, from which we determined the Q factor of the resonator to be

∼ 100 (as shown in Figure 8.4c).

8.4.2 rf Locking and Stability

The fidelity of quantum operations within ion traps is sensitive to fluctuations in the RF frequency,

which may be driven by noise in the input RF amplifier, mechanical vibrations of the resonator, and

temperature drifts (to name a few sources). Since the trap secular frequencies depend on the ratio

of V0/Ωt (Equation 8.3), and since the RF drive frequency Ωt is typically well-stabilized at the RF

source, active RF amplitude stabilization is a crucial tool for keeping the trap secular frequency

consistent. In our case, we actively stabilize the RF voltage amplitude following the techniques

outlined in [137]2.
2The single-coil replacement resonator does not presently have a capacitive divider as referenced in section 8.4.2,

and at the time of writing we are working with free-running RF voltage. Drift in our motional sidebands is measurable
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Figure 8.5: (a) Servo loop block diagram for active stabilization of the RF voltage amplitude. VVA:
Voltage Variable Attenuator, PID: proportional-integral-derivative controller. (b) Allan deviation
of the RF signal amplitude during operation of the servo loop in (a).

Our servo loop block diagram is shown in Figure 8.5a. The RF generator produces a signal

at frequency Ωt = 2π × 27.51 MHz and power -8 dBm, which passes through a voltage variable

attenuator (VVA) and is amplified before being sent to the helical resonator. The picked-off signal

from the resonator passes through a rectifier circuit and is fed as the input of a closed propor-

tional–integral–derivative (PID) loop. The RF amplitude is thus stabilized with respect to the set

point value.

We performed long-term monitoring of the DC signal after the rectifier when the servo is en-

gaged. These measurements represent the scale of RF amplitude fluctuations over time. We find

that the Allan deviation of RF amplitude scales with time τ as ≈ 1/
√
τ ; at 1000 s, the relative

stability is 2.74 ± 0.04 × 106, which translates to a ∼ 30 Hz rms fluctuation of the radial secular

frequencies.

8.4.3 DC Control

In addition to RF control, we desire stable, low noise voltages applied to the DC trap electrodes. We

apply these voltages using static DC power supplies (Matsusada R4G series) that can output 0-120

over experiment timescales, and in the near future, RF frequency locking will need to be implemented with the single-
coil resonator either by adding a capacitive divider or using a bidirectional coupler for voltage sampling.

139



Figure 8.6: DC circuit diagram of our ion trap. The in-vacuum filter is designed to reduce the RF
pickup on the static DC blades.

V with 1 mVrms ripple. To prevent noise pickup from various ancillary electronic devices, each DC

channel is externally RC-filtered before being connected to a 9-pin feedthrough at the trap vacuum

chamber. Given the small dimensions of our blade trap, one additional concern is unwanted RF

pickup on the DC blades. To mitigate this effect, each DC blade segment is wirebonded to an

800 pF capacitor to shunt RF pickup to ground (see image in Figure 8.1c). To model the effective

in-vacuum circuit, we treat the ion trap as a capacitor (Ctrap) and consider the contributions from

the on-trap filter elements and vacuum feedthroughs, as shown in Figure 8.6. Using this model, we

can estimate the RF pickup on the static DC blades by first calculating the complex impedance

Z2 =

(
1

ZC,filter + ZR,filter

+
1

ZC,feed + ZR,feed + ZL,feed

)−1

(8.10)

where for our system, ZR,feed ≈ Rfeed ≪ 1Ω, |ZC,feed = 1
ΩtCfeed

≈ 1.8Ω and |ZL,feed| =

ΩtLfeed ≈ 52Ω. The resistance of the filter Rfilter ≪ 1Ω, which is negligible compared with the

capacitive filter impedance |ZC,filter| = 1
ΩtCfilter

= 7.2Ω. Thus, we estimate the impedance |Z2| =

6.4Ω. The measured trap capacitance of 10 pF leads to an impedance |Z1| = 600Ω at our trap drive

frequency. Therefore, the estimated RF pickup on the DC blades is then |Z2|
|Z1|+|Z2|VRF = 0.01VRF .
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We note that in the absence of the on-trap filter capacitors, the RF pickup on the DC blades would

be approximately a factor of 8 larger.

8.5 Experimental Demonstration

8.5.1 Laser Access and Internal States

Our blade trap and vacuum system have been designed to ensure sufficient optical access for state

preparation, manipulation, and measurement. As shown in Figure 8.7, 174Yb+ ions are loaded

into the trap via photo-ionization of neutral 171Yb using 399 nm and 369.5 nm light. Ions are

Doppler cooled by 369.5 nm light that is ≈ 10 MHz red-detuned of the 2S1/2
2P1/2 transitions,

and co-aligned with the 399 nm beam. Additional wavelength components near 369.5 nm are used

for optical pumping and detection of the qubit state, while co-aligned light at 935 nm is used to

repump population out of the metastable 2D3/2 state [138]. A 5 G magnetic field along the vertical

direction breaks the degeneracy of the hyperfine triplet. Finally, two-photon stimulated Raman

transitions for quantum state manipulation are driven by shining two 355 nm beams such that their

wave vector difference ∆k⃗ is aligned along the transverse direction of the radial-2D crystal (which

is the axial direction of the trap).

8.5.2 Confinement and Imaging of Radial-2D Crystals

Ions may be confined in radial-2D crystals once the trap secular frequencies satisfy the inequality

in Equation 8.6. To create this ion geometry experimentally, we load the desired number of ions at

low axial frequency ωz, then increase the endcap voltages (DC1, DC3, DC4, DC6) to push the ions

into the radial-2D phase. In practice, imperfect electrode fabrication, trap misalignments, and stray

electric fields could cause ion heating during the transitions through different structural phases. To

avoid losing ions, and to minimize any excess micromotion, we compensate by applying small

bias voltages to blade segments as needed. Once ions are in the 2D regime and Doppler cooled

to milliKelvin temperatures, they form a Wigner crystal as the system minimizes its configuration

energy. As shown in Figure 8.8, the final crystal geometry takes the form of a triangular lattice in
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Figure 8.7: Concept drawing of the trap and laser beam configurations for photoionization (399
nm), cooling, optical pumping, and detection (369.5 nm), repumping (935nm), and two-photon
Raman transitions (355nm). The CCD camera faces the crystal plane and the magnetic field is
oriented vertically. Oscillating voltages on electrodes RF1 and RF2 provide the radial confinement,
while static voltages applied to electrodes DC1, DC3, DC4, and DC6 provide axial confinement.
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Figure 8.8: CCD images of crystals with 3, 5, 7, 13, 17, and 29 ions trapped in the radial-2D crystal
phase, with measured center-of-mass frequencies ωx = 2π × 0.416 MHz, ωy = 2π × 0.446 MHz,
ωz = 2π × 1.124 MHz. Red crosses show the ion positions predicted under the pseudopotential
approximation

the radial plane.

The ion positions can be predicted under the pseudopotential approximation once the trap fre-

quencies are experimentally known. To measure the ion secular frequencies for a set of applied trap

voltages, we inject an additional small RF voltage on the trap electrode DC 3 following Doppler

cooling. This electrode is chosen since its contribution to the electric field at the ion has com-

ponents along the x, y, and z directions. If the injected RF drive is in resonance with the ion’s

oscillation frequency, the ion will absorb energy and heat up, decreasing its fluorescence when

probed with a detection laser beam [112]. Once the frequencies are determined, we use the proce-

dure outlined in Sec 2.3 to predict the ion positions in the radial-2D crystal; results are shown as

red crosses in Figure 8.8.

More complex processes are involved when laser cooling ion crystals in two- and three-dimensions

143



as compared to the one-dimensional case. Ions away from the trap center experience micromotion,

which leads to Doppler-shifted cooling transitions which depend on the micromotion amplitude

at each ion position. For large crystals, this micromotion-induced Doppler shift can lead to dra-

matically different cooling rates for a crystal’s outermost ions as compared to the inner ions [45].

Optimum Doppler cooling is often found further red-detuned than the typical single-ion detun-

ing, which may result in relatively decreased fluorescence for the innermost ions (as seen in Fig-

ure 8.8f). For very large crystals, it may ultimately prove necessary to introduce multi-tone Doppler

cooling to frequency-address ions at different radii, or to power-broaden the resonant transition as

suggested in [45].

8.5.3 Ion Trajectory Analysis

In radial-2D crystals, ions located far from the origin experience the largest amplitude of micromo-

tion. Following the process outlined in Sec 2.3 (and Appendix A), we calculate that the maximum

radial micromotion amplitude in a 17-ion radial-2D crystal is < 650 nm, which is small compared

to the ∼ 1µm diffraction-limited spot size of our imaging system as well as the 5µm inter-ion

spacing. The micromotion along the axial direction is calculated to be negligible due to the small

Mathieu qz parameter; this was confirmed in prior measurements using the “needle trap” geometry,

where the radial-2D crystal was imaged from the side. Since the out-of-plane axial modes remain

micromotion free in this geometry, these modes will be preferable for performing future quantum

simulation experiments.

Close inspection of the ion trajectories in Figure 8.8 reveals a convex curvature, rather than

the concave curvature which would be expected from driven micromotion (see calculation in Fig-

ure 8.2b). We attribute this result to thermally-driven, small-angle rotations of the ion crystal.

Consider, for instance, a radial-2D crystal in a perfectly symmetric potential with degenerate ra-

dial secular frequencies. The crystal will be free to rotate with no energy penalty; when imaged on

a CCD camera, the ions will appear as concentric rings. Although in our trap this degeneracy is

explicitly broken, residual thermal energy in the crystal may still induce small azimuthal oscilla-
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tions. We calculate that the ion excursions observed in Figure 8.8(e)-(f) are consistent with crystal

temperatures of only ≈ 20 mK. We anticipate that this effect can be reduced by further breaking

the degeneracy between the radial secular frequencies, by introducing multi-tone Doppler cooling

[57], or by applying sub-Doppler cooling techniques such as resolved sideband cooling [50, 139]

or Electromagnetically-Induced Transparency (EIT) cooling [121, 122].

8.6 Conclusion

Radial-2D crystals hold great promise as a platform for quantum simulation of exotic many-body

materials but require carefully-designed RF traps to realize a robust implementation. In this work,

we have presented the design of an open-endcap blade trap which allows for both stable confine-

ment of radial-2D crystals as well as site resolved imaging of the triangular 2D lattice. The elec-

trode geometry has been chosen so that the required trap potentials are accessible using reasonable

laboratory voltages, and the use of tungsten as an electrode material limits potential damage from

resistive heating or voltage flashover. Furthermore, we have implemented RF and DC electronics

which lead to stable and low-noise operation of the trap.
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CHAPTER 9

CONCLUSION AND OUTLOOK

In this thesis, I presented an experimental platform for performing quantum simulation protocol on

a radial-2D lattice of 171Yb+ ions in an RF trap. Our characterization of a rod-style linear Paul trap

shows that radial-2D crystals can be a robust platform, in which micromotion effects are essentially

constrained to the radial plane, and axial vibrational modes remain cold and decoupled. The design

and implementation of a blade-style RF trap tailored to optimal (and experimentally reasonable)

trap parameters, permits site-resolved imaging of large radial-2D crystals. Our experimental obser-

vations of up to 29 ions in radial-2D arrays, imaged perpendicularly to the crystal plane, pave the

way for 2D quantum simulation experiments. An integral component of quantum simulation yet

to be demonstrated for radial-2D crystals is the creation and characterization of entangled states.

System decoherence has thus far prevented us from providing definite proof of entanglement cre-

ation, though near-term hardware improvements are expected to increase coherence times past the

entanglement detection threshold.

After verifying entanglement protocol, we will be able to use global laser beams to characterize

the ground state and dynamical properties of frustrated 2D spin-models by measuring their exci-

tations [23] and correlation functions (which can distinguish, for instance, between Néel states or

Valence Bond Solid states [140]), and by tuning the relative contributions of inherent geometric and

long-range frustration. In future work, we also anticipate implementing individual-ion addressing,

which will further expand the classes of quantum materials that may be simulated using radial-2D

crystals in linear RF traps. Shelving of specific ions will allow for the quantum simulation of more

complex lattice geometries, such as Kagome, which are believed to support spin-liquid phases [26,

23, 25, 141, 142]. In the long term, radial crystals with individual addressing may provide a nat-

urally scalable solution for fault-tolerant quantum computing [28, 29] or simplify preparations for

one-way quantum computing schemes [30, 31].
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An optimized protocol for pulsed SBC was presented, along with a time-averaged thermometry

method which more accurately measures ion temperature after extensive SBC compared to stan-

dard techniques. This time-average technique opens new possibilities for noise characterization

in trapped ion systems, and the SBC graph representation method may be extended to multiple

ions and multiple modes. However, even with optimized protocol, SBC will remain the longest

experiment time component by a large margin. For one ion, a typical experiment can require min-

utes of sideband cooling. When ion number is increased, the SBC time also increases as 1) we

must cool along more motional modes, 2) we start from a higher temperature due to micromo-

tion effects on Doppler cooling, and 3) we cannot simultaneously cool multiple motional modes

with SBC, meaning the COM mode heats while the other modes are being cooled. We plan to

significantly reduce the amount of SBC pulses required by introducing an intermediate round of

Electromagnetically-Induced Transparency (EIT) cooling in between the Doppler cooling and SBC

sequences. EIT cooling provides fast sub-Doppler cooling over all motional modes in < 1 ms and

has been successfully implemented in 171Yb+ systems [122, 121].

Finally, we have measured qubit susceptibility to small-dose radiation and found no quantifi-

able degradation for any of the measurements performed. This finding is encouraging for the long-

term prospects of using ion-based quantum information systems in hostile environments. In future

experiments, we will work with higher-dose radiation sources to better quantify possible points

of failure and guide design requirements for system shielding or alternative quantum information

protocols robust to radiation-induced errors. Such investigations are primarily complicated by the

difficulty of integrating high-dose radiation sources within standard atomic-physics laboratories.

To circumvent this difficulty, we are developing a portable ion trap based on laser-cooled 171Yb+

ions. The entire system is accommodated into two mobile rack units comprised of laser, electron-

ics, and physics package subsystems, including a lumped circuit RLC resonator. The compact and

robust package is specifically designed to fit within test chambers located at high-dose radiation

test facilities, and will support future ion-trap-based quantum science in extreme environments.
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APPENDIX A

FLOQUET-LYAPUNOV SOLUTION OF ION MOTION

A.1 Dynamic Solution of Ion Motion

In this section, we precisely solve the normal modes and micromotion of N ions in a 2D crystal by

the Floquet–Lyapunov transformation [116, 117].

The potential energy of the ions in our Paul trap can be written as

V = Vtrap + Vcoulomb

=
n∑
i

1

2
(Λxx

2
i + Λyy

2
i + Λzz

2
i ) +

∑
i ̸=j

1

2

q2

4πϵ0
∥ri − rj∥−1

(A.1)

where ri = {xi, yi, zi} is the vector coordinate of ion i, and the time-dependent trapping terms are

given by

Λα = Bα + Aα cos(Ωtt), α ∈ {x, y, z} (A.2)

Aα, Bα represent the real trap electric potential coefficients. In Sec 2.3 we calculated the secular

frequencies under the pseudopotential approximation, which may be expressed as

Vpseudo =
1

2
m

n∑
i

(ω2
xx

2
i + ω2

yy
2
i + ω2

zz
2
i ) (A.3)

The total potential energy could then be written as

V = V1 + V2

= (Vpseudo + Vcoulomb) + (Vtrap − Vpseudo)

(A.4)

Treating V2 as the perturbation, we expand the time-dependent positions {Ri,α(t)} around the

minimum-configuration locations {R0
i,α} = (x

(0)
1 , y

(0)
1 , z

(0)
1 ,. . . , x(0)

N , y
(0)
N , z

(0)
N ) that are obtained
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from the secular part of V1 = Vpseudo + Vcoulomb. The time-dependent positions can then be written

in terms of the normal modes Sj by setting

Ri,α(t) = R0
i,α + ri,α = R0

i,α +
3N∑
j

Γi,jSj(t) (A.5)

where Γi,j are the matrix elements of the normal mode vectors, with rows indexed by the N ions i

in the three directions α, and columns indexed by the 3N normal modes j.

We then plug Equation A.5 into Equation A.4, write the potential in terms of the normal modes,

and keep the first two terms:

V =
1

2
S⃗TΛS⃗ +

N∑
i,α

(Λα − 1

2
mω2

α)(R
0
i,α +

3N∑
j

Γi,jSj)
2 + . . .

≈ 1

2
S⃗TΛS⃗ + ((R⃗0)T + S⃗TΓ)(W1 +W2cosΩt)(R⃗

0 + ΓT S⃗)

(A.6)

where Λ = diag{Ω2
iα}, W1 = diag{Bα − 1

2
mω2

α}, W2 = diag{Aα}, and Ωi is the ith normal

frequency in α direction. The linearized equation of motion derived from Equation A.6 is

mS ′′ + (Λ + J) · S + P + (L+ Y · S) cosΩt = 0 (A.7)

where

P⃗ = Γ ·W1 · R⃗0 + (R⃗0)T ·W1Γ
T

L⃗ = Γ ·W2 · R⃗0 + (R⃗0)T ·W2Γ
T

J = Γ ·W1 · ΓT + (Γ ·W1 · ΓT )T

Y = Γ ·W2 · ΓT + (Γ ·W2 · ΓT )T

(A.8)
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Let
A = (Λ + J)

4

Ω2m

Q = −1

2
Y

4

Ω2m

G⃗ = −P⃗
4

Ω2m

F⃗ = −1

2
L⃗

4

Ω2m

(A.9)

We then have a simplified inhomogeneous Mathieu Matrix Equation from Equation A.7

S⃗ ′′ + (A− 2Q cosΩt) · S⃗ = G⃗+ 2F⃗ cosΩt (A.10)

where F and G are 3N -component constant vectors. We assign the basic π periodic solution

S⃗ =
∞∑
−∞

B⃗2ne
i(2n)t in the equations of motion (Equation A.10) to obtain

(A− 4n2)B⃗2n −Q(B⃗2n−2 + B⃗2n+2) =

G⃗δ1,n + F⃗ (δn,1 + δn,−1)

(A.11)

By defining C2n = A − 4n2 and using B2n = B−2n, we can write infinite recursion relations for

B⃗2n,

AB⃗0 − 2QB⃗2 = G⃗ (A.12)

C2B⃗2 −Q(B⃗0 + B⃗4) = F⃗ (A.13)

C2nB⃗2n −Q(B⃗2n−2 + B⃗2n+2) = 0, (n ≥ 2) (A.14)

Equation A.14 immediately gives a recursion relation in the form of Equation A.10, which allows

us to get the infinite inversions expression

B⃗4 = T2QB⃗2 (A.15)
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where

T2 = [C4 −Q[C6 −Q[C8 − ...]−1Q]−1Q]−1 (A.16)

Substituting Equation A.15 into Equation A.12 and Equation A.13 we obtain the linear system

 A −2Q

−Q R2 −QT2Q


 B⃗0

B⃗2

 =

 G⃗

F⃗

 (A.17)

which can be solved to find the coefficients of the normal modes S⃗, and the micromotion terms

r⃗ = ΓT · S⃗.
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APPENDIX B

VOIGT DISTIBUTION

A Voigt function is the convolution of a Gaussian lineshape G and Lorentzian lineshape L:

V (δ;σ,Γ) =

∫ ∞

−∞
G(δ′;σ)L(δ − δ′; Γ)dδ′ (B.1)

where δ is the detuning and G(δ;σ) is the centered Gaussian profile

1√
2πσ

exp(− δ2

2σ2 ) (B.2)

with Doppler width

σ ≡ ∆νG =

√
kBT

mλ2 , (B.3)

where λ = 369 nm, kB is Boltzmann’s constant, and T is the ion temperature. For our trap

geometry,

∆νG = 2

√
(2 ln 2)kB

mλ2

√
Tr cos

2 θ + Tz sin
2 θ, (B.4)

since our fluorescence beam intersects the crystal plane at an angle (θ = 45◦) and is therefore

sensitive to both the radial and axial temperatures Tr and Tz.

The Lorentzian contribution

L(δ; Γ) =
1

π

Γ

δ2 + Γ2 (B.5)

comes from the power-broadened natural linewidth

∆νL = Γ
√
1 + s = 2π × 22 MHz, (B.6)

where Γ = 2π×19.6 MHz is the natural linewidth of the 171Yb+ 369.5 nm 2S1/2 →2 P1/2 transition

and s = .3 is the laser saturation parameter.
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APPENDIX C

THERMOMETRY

C.1 Ratio Thermometry

The ratio method [59] estimates the average harmonic state n̄ of a thermal distribution pth(n) =

n̄n/(n̄+ 1)n+1 by using the unique property pth(n+ 1) = pth(n)n̄/(n̄+ 1).

Given a RSB Rabi oscillation

P RSB
↑ (t) =

∞∑
n=1

pth(n) sin
2

(
Ωn,n−1t

2

)
=

n̄

n̄+ 1

∞∑
n=0

pth(n) sin
2

(
Ωn,n+1t

2

)
(C.1)

and a BSB Rabi oscillation

P BSB
↑ (t) =

∞∑
n=0

pth(n) sin
2

(
Ωn,n+1t

2

)
(C.2)

their ratio is a function n̄ for any time t or frequency detuning

r ≡
P RSB
↑ (t)

P BSB
↑ (t)

=
n̄

n̄+ 1
. (C.3)

C.2 SVD Thermometry

The SVD method [66] is a frequency-domain analysis of a RSB or BSB Rabi oscillation. In this

method, Ωn,n
′ is independently calculated, and its contribution to the overall Rabi oscillation is con-

structed into a rectangular matrix (dimension M ×N ) with M time steps taken in the experiment,
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considering N harmonic states of interest, and elements bn(t) = sin2(Ωn,n−1t/2). This matrix

acts on the harmonic distribution vector (N × 1) to produce a vector representing the measured

fluorescence at each experimental time step. For example, a BSB oscillation would be constructed

as follows



b1(t0) b2(t0) . . .

b1(t1) b2(t1) . . .

b1(t2) b2(t2) . . .

...
... . . .





p(0)

p(1)

p(2)

...


=



P BSB
↑ (t0)

P BSB
↑ (t1)

P BSB
↑ (t2)

...


. (C.4)

Using singular value decomposition (SVD), the rectangular matrix is pseudo-inverted to solve

for the harmonic distribution vector. Once this vector of p(n) is known, the average occupation is

found by calculating n̄ =
∑

np(n).
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