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Abstract. Trapped-ion quantum simulators have demonstrated a long history of

studying the physics of interacting spin-lattice systems using globally addressed

entangling operations. Here, we seek to broaden and delimit the classes of effective

spin-spin interactions achievable using exclusively global driving fields. We find that

new categories of interaction graphs become achievable with perfect or near-perfect

theoretical fidelity by tailoring the coupling to each vibrational mode of the ion crystal,

or by shaping the trapping potential to include specific anharmonic terms. We also

derive a rigorous test to determine whether a desired interaction graph is accessible

using only globally driven fields. These tools broaden the reach of trapped-ion quantum

simulators so that they may more easily address open questions in materials science

and quantum chemistry.
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1. Introduction

For over 15 years trapped-ion platforms have pushed forward the frontier of quantum

simulation, wherein a controlled quantum system is made to emulate the behavior of

a target system [1, 2]. Trapped ions exhibit key features for quantum simulation, such

as the ability to form lattices with long quantum coherence times [3], near-perfect state

preparation and measurement [4, 5], and high-fidelity quantum operations [6] that can

be controlled and reprogrammed using laser light. As a result, trapped-ion systems have

been used to simulate diverse problems from condensed-matter physics [2] and quantum

chemistry [7–12] to high-energy physics [13] and cosmology [14].

In principle, trapped ions can simulate any possible quantum system since standard

single-qubit rotations [6, 15] and two-qubit entangling operations [16] form a universal

gate set. However, there is no guarantee that a target system of interest can be efficiently

represented by a sequence of quantum gates. For instance, simulating the quantum

dynamics of a generic Hamiltonian H requires decomposing its unitary propagator

U = e−iHt/ℏ into an exponential number of 2-qubit gates (O(4N) for an N -qubit

system [17]). To address this intractability, algorithms for Hamiltonian simulation have

been developed which exploit inherent symmetries and properties of certain types of

Hamiltonians to approximate their evolutions using far fewer quantum gates [18, 19].

Alternatively, non-gate-model techniques of analog and digital quantum simulation [20]

have long-demonstrated success by simulating Hamiltonians which inherit the native

interactions of the underlying trapped-ion system [2,21,22].

To date, analog and digital Hamiltonian simulation methods have largely centered

around global Ising-type XX-interactions, which arise natively through the application

of a Mølmer-Sørensen operation [16, 23]. Such interactions are most commonly used

to generate long-range Ising couplings between effective quantum spins which decay

algebraically with distance [24]. This simple foundation, when combined with the ability

to apply effective magnetic fields, has led to over a decade of trapped-ion experiments

probing classical and quantum Ising models, XY and Heisenberg models, open quantum

systems, and non-equilibrium physics [2].

In this work, we seek to broaden and delimit the classes of spin-spin couplings

achievable using globally addressed Mølmer-Sørensen interactions. We find that a

wide range of native interactions becomes accessible by controlling the participation

of each vibrational mode of the lattice during a simulation, or by purposefully confining

ions within anharmonic trapping potentials; neither approach requires locally addressed

entangling gates. These techniques would enable straightforward experiments probing,

for instance, spin models with pure nearest-neighbor interactions, ring topologies,

infinite-range couplings, higher-dimensionality spin lattices, and multipartite quantum

systems with interacting degrees of freedom.

The article is structured as follows. Section 2 reviews the standard framework of

generating effective spin-spin Ising interactions in trapped ions using global laser beams.

In Sec. 3, we show how this standard treatment may be extended by adding multiple
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frequency components to the global beams, unlocking new classes of native interaction

profiles. Section 4 presents further classes of interactions which may be generated by

modifying the trapping potential experienced by the ions. We conclude in Sec. 5 with

a discussion of potential error sources, challenges, and opportunities for experimental

implementation.

2. Framework for Effective Spin-Spin Interactions Within Ion Coulomb

Crystals

2.1. The Motional Mode Structure of Ion Coulomb Crystals

A collection of N atomic ions, when confined in a Paul trap using electric fields and

cooled to milliKelvin temperatures, forms a Coulomb crystal with 3N vibrational modes

of motion [25]. Ion Coulomb crystals may be created in one, two, or three dimensions

depending on the number of ions and the configuration of trapping voltages [25–31].

In this section, we first consider the motional modes for a one-dimensional ion chain,

in which the confinement along the chain axis z is weak compared to the confinement

along the two transverse directions. Later, we generalize to Coulomb crystals in higher

dimensions.

If the transverse confinement along the x and y axes is harmonic, and the axial

potential is symmetric around the trap center, the potential energy of a single ion is

Utrap(x, y, z) =
1

2
m

(
ω2
xx

2 + ω2
yy

2 + ω̃2
z

∞∑
n=2

βnz
n

)
(1)

where m is the ion mass and ωx, ωy are the motional center-of-mass (COM) frequencies

along the x and y directions. In the simplest and most common case, the axial potential

is also harmonic: βn = δn,2 and ω̃z is equal to the COM mode frequency ωz along the

z direction. For anharmonic axial potentials, the terms βn provide the contribution of

each polynomial order and ω̃z sets the overall numerical scale.

To compute the normal mode frequencies and amplitudes along the x direction,

we include the inter-ion Coulomb interaction terms and expand the potential in the x

direction to second order about the ions’ equilibrium positions, with displacements ξi,

i = 1, . . . , N [32, 33]:

U (x) ≈ 1

2
mω̃2

z

N∑
i,j=1

Aijξiξj. (2)

where the matrix Aij for transverse motion along the x direction is [33]

Aij =



(
ωx

ω̃z

)2

−
N∑
p=1
p ̸=i

1

|u⃗i − u⃗p|3
if i = j

1

|u⃗i − u⃗j|3
if i ̸= j.

(3)
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Each vector coordinate u⃗i is the equilibrium position of the ith ion, made unitless by the

length scale l ≡ [q2/(4πϵ0mω̃2
z)]

1/3; q is the ion charge; and ϵ0 is the vacuum permittivity.

The eigenvalues and eigenvectors of matrix Aij determine the set of N transverse

mode frequencies along the x direction and participation vectors b⃗k, k = 1, . . . , N . The

participation vector b⃗k contains the amplitude of oscillation of each ion i, Bik, including

its sign, with the normalization

N∑
i

B2
ik = 1 ∀k,

N∑
k

B2
ik = 1 ∀i. (4)

In the transverse direction, the highest-frequency mode (corresponding to the largest

eigenvalue of Aij) is the COM motion for which each ion participates with equal

amplitude and sign. Lower-frequency eigenvectors contain an increasing number of

nodes, with the lowest (zig-zag mode) exhibiting a sign flip for each adjacent ion (figure

1(a)). Furthermore, the ion participation amplitudes for each mode feature an envelope

which narrows more and more prominently at the chain center for lower-frequency

modes, leaving the edge ions with nearly zero participation in the zig-zag motion. As

we later show, the details of these mode participations inform the classes of spin-spin

interactions accessible using global drives.

The above analysis may be extended to understand the transverse (drumhead)

modes of a two-dimensional Coulomb crystal. This 2D ion geometry arises when the

potential along two of the axes is weak compared to the third [27, 34]; here, we again

assume that confinement is harmonic in all three directions. For the 2D case, the Aij

matrix is readily adjusted by incorporating the new ion equilibrium positions u⃗i in

equation (3). The transverse modes of the 2D crystal (figure 1(b)) are found to share

qualitative features as those of the 1D chain (figure 1(a)). For instance, the highest-

frequency vibration is an equal-participation COM mode while the lowest-frequency

vibration is a zig-zag mode strongly peaked near the center of the crystal, where adjacent

concentric “rings” of ions oscillate out of phase.

When the axial trapping potential is made anharmonic, the corresponding

transverse motional mode vectors may differ substantially from the harmonic case, even

though the transverse axes remain harmonically confined. A notable example is an

axial potential tailored such that the ions are equally spaced. In this case, the mode

eigenvectors exhibit a more uniform distribution of motional amplitudes, particularly

for the low-frequency modes (figure 1(c)). This configuration of equally spaced ions

in anharmonic potentials will prove favorable for expanding the accessible quantum

simulation experiments with global beams, as we will show in Section 4.

2.2. Generating spin-spin couplings from laser–ion interactions

Here we return to the 1D case to present a matrix formulation of laser-driven spin-

spin couplings which will allow for simplified engineering of interaction graphs between

trapped-ion qubits. We will consider the use of one set of N transverse vibrational
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Figure 1. Sample transverse mode participation vectors for crystals of N = 19

ions. The first row shows the highest frequency mode, while the last row is the

lowest frequency mode. (a) Harmonically confined 1D chain. (b) Transverse mode

participations for a 2D ion array. The colored disks indicate the participation vectors

for each ion using the same color scale as in (a). (c) Mode participation vectors for an

equispaced 1D chain. Compared to the harmonic case, the edge ions participate more

strongly in the lower-frequency modes.

modes, with frequencies ωk, k = 1, . . . , N to mediate effective spin-spin interactions

within the crystal. We note that a parallel analysis may be performed for the axial

modes which are likewise subject to the normalization conditions in equation (4).

Within each ion, a spin-1/2 qubit may be encoded in two electronic states |↓⟩z and
|↑⟩z separated by ℏω0. Under the application of a bichromatic electric field of the form

E⃗ = E0ŷ cos[kx−(ω0±µ)t+ϕ] [25], the Hamiltonian describing the laser-ion interaction

for spin-1/2 systems may be written:

Hphys =
N∑
i

−diE0σ
i
x cos(kxi − ω0t± µt+ ϕ) (5)

where di is the magnitude of the electric dipole operator for the ith ion and µ is the

detuning of the exciting radiation from the qubit transition ω0. The σi
x operator in

equation (5), equivalent to the Pauli X operator on ion i, arises from writing the dipole

operator as a matrix coupling |↓⟩z and |↑⟩z.
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The time evolution of Hphys may be approximated by evolution under an effective

spin Hamiltonian,

Hspin =
∑
i<j

Jijσ
i
xσ

j
x (6)

where Jij ∈ R is the effective spin-spin coupling between ions i and j. This Ising-type

Hamiltonian, with pairwise σi
xσ

j
x interactions, emerges when the time evolution of Hphys

is written using the Magnus expansion [2, 24] in the regime where the motional modes

are only virtually excited. Time evolution of Hspin generates entanglement between

coupled qubit pairs and is the foundation of nearly all quantum simulation experiments

with trapped ions [2].

When global driving fields (such as laser beams) are applied to the ions, the profile

of the interaction matrix Jij is uniquely determined from the mode vectors b⃗k. In

equation (6), the coupling coefficients Jij are

Jij = Ω2R
N∑
k

BikBjk

µ2 − ω2
k

(7)

where Ω is the global, on-resonance Rabi frequency at each ion, R is the recoil frequency

R = ℏ(∆k)2/(2m), and ℏ∆k is the momentum transfer from the electric field to each

ion.

To highlight the crucial role played by the mode eigenvectors in dictating the spin-

spin interactions, we define the mode interaction matrices J (k) ≡ b⃗k ⊗ b⃗k, with matrix

elements

J
(k)
ij ≡ BikBjk (8)

and rewrite Eq. (7) as

J =
N∑
k

ckJ
(k). (9)

Each J (k) matrix, which only depends on that mode’s vector b⃗k, is weighted by a

coefficient ck ≡ Ω2R/(µ2 − ω2
k) that depends on mode and laser frequencies and captures

each mode’s contribution to the final interaction matrix J . Sample J (k) matrices for a

1D chain of 7 ions are shown in figure 2. Recasting equation (7) into the form of equation

(9) highlights that, given a geometric configuration of trapped ions, the weights ck are

the sole experimental knob available for interaction engineering with global beams. To

gain full control over these weights, one may apply M bichromatic tones, with frequency

µm and amplitude Ωm, such that the sum over all contributions provides the desired

ck [35]:

ck =
M∑
m

c
(m)
k (10)

where c
(m)
k ≡ Ω2

mR/(µ2
m − ω2

k).
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Figure 2. Transverse mode spectrum of N = 7 harmonically confined ions in a one-

dimensional chain. Each mode frequency is associated with a N×N matrix J (k) which

reflects the structure of normal mode vector b⃗k.

The normalization of the mode vectors (equation (4)) leads to the property (proven

in Appendix A):
N∑
k=1

J (k) = 1. (11)

This implies that if all motional modes were equally driven by the exciting radiation, the

resulting spin-spin interactions would be zero. Likewise, this also implies that there are

multiple sets {ck} which generate the same interaction model. For instance, an equal-

amplitude all-to-all coupling may be generated by coupling only to the COM mode, or

by coupling to all modes except the COM mode. These properties of the J (k) matrices

provide significant flexibility when experimentally implementing spin-spin couplings for

quantum simulations with global beams.

2.3. Metrics for Quantum Simulation Fidelity

For a generic physically inspired Hamiltonian of the form in equation (6), we may ask

how closely a trapped-ion system with global beams replicates the desired spin-spin

interactions. Following [35], we define the coupling matrix infidelity I to quantify the

difference between a desired coupling matrix Jdes and its best experimentally realizable

approximation Jexp:

I ≡ 1

2

(
1− ⟨J̃exp, J̃des⟩

∥J̃exp∥∥J̃des∥

)
(12)

where we make use of the Frobenius matrix product and matrix norm, respectively

⟨A,B⟩ = Tr(AB) =
N∑
i,j

AijBij and ∥A∥ =
√
⟨A,A⟩

for N × N real symmetric matrices A, B. Ã denotes matrix A with its diagonal

subtracted. This is necessary because the diagonal entries of the interaction matrices

do not bear any physical significance and hence should not affect the infidelity measure.
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Figure 3. Infidelity of implementing the power law model of equation (13) for chains

of N = 10 to 60 ions using a single bichromatic tone. Uniform all-to-all interactions

(α = 0) are possible with perfect fidelity only in the limit of infinitely small detuning

from the COM mode. For detunings where the tilt mode contributes strongly to the

overall coupling matrix, as is the case for 0.5 ≲ α ≲ 1, the interaction profile deviates

from power-law behavior by several percent.

The smallest value of I is 0 if Jexp = rJdes, and the largest is 1 if Jexp = −rJdes, with a

scaling factor r > 0. For uncorrelated Jexp and Jdes , I = 0.5 on average. In practice, if

I ≳ 0.05, the experimentally achievable Jexp provides only a poor approximation of the

desired Jdes.

As an example, we calculate the infidelity for one of the most commonly studied

interaction graphs in ion-trap simulators: anti-ferromagnetic (AFM) Ising interactions

that decay algebraically with distance [2]. Experimentally, this model is typically

realized by driving a bichromatic laser tone µ > ωCOM which couples most strongly

to the transverse COM mode and most weakly to the zig-zag mode. The resulting

spin–spin interactions resemble a power law

Jexp = Ω2R

N∑
k

BikBjk

µ2 − ω2
k

≈ J0
|i− j|α

(13)

where J0 > 0 and the interaction range α is experimentally tunable between 0 and

3 [36]. For small numbers of ions, and for limited interaction ranges 0.5 < α < 2,

the approximation in equation (13) has been sufficient to study a variety of interesting

physical phenomena [2], such as the ground-state [37] and dynamical [38] properties

of power-law AFM spin lattices. However, as shown in figure 3, deviations from the

power-law model are significantly larger when considering the full range of possible α

and larger numbers of ions. Accessing these regimes with high fidelity therefore requires

the development of new experimental techniques to more precisely engineer the desired

interaction graph.

3. Expanded set of interaction profiles using multiple modes

Following the framework introduced in Section 2, here we delineate the full range of

interaction profiles which may be accessed using global beams applied to harmonically
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confined ions. We present a rigorous test to determine whether a desired set of couplings

Jdes may be experimentally realized, and we discuss several example spin models which

may be simulated without requiring locally-addressed entangling gates. Finally we show

how seemingly inaccessible coupling matrices Jdes may be recast, without affecting their

underlying physical properties, to improve their implementation fidelity.

3.1. Accessible interaction graphs

We begin with the observation that a long-range AFM Ising model with pure power-

law decays, introduced in Section 2.3, cannot be realized perfectly using only global

beams. Rather, its experimental implementation is approximate, relying on the specific

mode couplings which arise from, for example, a single bichromatic tone of frequency

µ > ωCOM. These couplings shape the weights ck with which the J (k) matrices are

summed together, serendipitously resulting in a Jexp which resembles an Ising model

with power law interactions.

To systematically determine which interaction profiles are accessible with

theoretically perfect fidelity using global beams, we return to equation (9). Given

a collection of ions in a harmonic potential, the mode eigenvectors b⃗k are uniquely

determined, which in turn determines the J (k) matrices. Hence the only free parameters

in equation (9) are the mode weights ck; controlling these then opens the pathway to

engineering a desired coupling matrix Jdes. Already, experiments have demonstrated

that a desired set of weights {ck} may be applied using M multiple bichromatic tones,

each with independent frequencies µm and amplitudes Ωm [35, 39]. However, we note

that only a subset of arbitrary interaction matrices J can be realized if the experimental

apparatus uses global laser beams. This is because there are of order O(N2) free

parameters in an arbitrary J matrix, whereas the mode interaction matrices J (k) provide

only O(N) linearly independent degrees of freedom.

Our key result in this section, proven in Appendix B, applies to any set of vibrational

modes along a harmonically confined axis used for quantum simulation. Under this

condition, a desired interaction matrix Jdes is accessible with theoretically perfect fidelity

if and only if it is diagonalized by the mode vector matrix B:

Jdes is accessible ⇐⇒ C ≡ BTJdesB is diagonal (14)

Equation (14) holds so long as the diagonal entries of Jdes, otherwise bearing no physical

significance, are chosen to zero the sum of each row and column (i.e. Jdes is written

in graph Laplacian form [40]). If Jdes is accessible, the diagonal matrix C contains

the weights ck of each mode interaction matrix J (k) necessary to realize Jdes, up to an

additive constant (arising from equation (11)). Thus, for accessible Jdes matrices,

Jdes =
N∑
k=1

ckJ
(k). (15)

Equation (14) formalizes the intuition that only interaction matrices compatible with

the structure of the crystal’s motional modes can be realized. We note that not all
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spatial axes need harmonic confinement for equation (14) to hold; it is valid as long as

the axis used for the entangling operations is harmonically confined.

Another property of realizable interaction matrices, specific to 1D ion chains with

symmetric confining potentials, is their symmetry with respect to their anti-diagonal.

That is, two pairs of qubits mapped to each other by a reflection around the chain center

have the same interaction strength:

J
(k)
ij = J

(k)
N−i+1,N−j+1 i, j = 1, 2, . . . , N. (16)

This follows from equation (8) and the fact that in a symmetric potential, all resulting

J (k) matrices are reflection-symmetric about their anti-diagonal (see figure 2). Therefore,

the part of a desired interaction matrix Jdes that is not symmetric with respect to the

anti-diagonal cannot be simulated.

A final important property is that any linear combination of accessible interaction

graphs is also accessible. This arises as a consequence of the linearity of equation (15)

and is applicable to ion crystals in any dimension. As we will show in Section 3.2, this

may be leveraged to build increasingly complex interaction profiles from combinations

of simple interaction graphs.

3.2. Example Applications: Exactly Realizable Interaction Graphs

3.2.1. All-to-All Interactions As a first example, we consider N spins interacting

with an equal-magnitude, all-to-all interaction. This Hamiltonian allows for analog

simulation of the Ising model (equation (13)) with an interaction range α = 0. In

addition, all-to-all interactions provide a pathway for speeding up certain algorithms in

the quantum gate model, since they can more efficiently implement operations such as

Toffoli gates, Quantum Fourier Transforms, or GHZ state creation [41–44].

Realization of this model is not feasible using the common approach of applying

a single bichromatic tone. In principle, one might tune that tone very close to the

COM mode such that it dominates over the contributions from all other modes. In

practice, this would place the system outside the far-detuned regime and would generate

significant unwanted spin-motion entanglement during the drive. Furthermore, in

the presence of any detuning from the COM mode, small (but non-zero) couplings

to the remaining modes combine to produce a final interaction graph which is only

approximately (but not exactly) the desired all-to-all Hamiltonian.

The all-to-all interaction graph can be simulated with perfect fidelity (I = 0) if

only the COM J (k) matrix contributes. This may be accomplished either by setting all

weights ck except the COM to zero, or following equation (11), by setting the COM

weight ck to zero and equal weights ck ̸= 0 for all other modes. Experimentally, adding

at least 2N + 1 frequency components to the global beams, as in [35], would allow

for the decoupling of ion motion from the applied spin interactions and thus enable

implementation of these desired mode weights {ck}.
The all-to-all interaction may be realized in both 1D ion chains or 2D crystals

(figure 4(a)), since it requires coupling to only the center-of-mass mode. Indeed, any
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(a) (b) (c)

Figure 4. Sample interaction profiles that can be simulated with perfect theoretical

fidelity (I = 0) for 1D and 2D crystals of N = 7 ions. All connections drawn as red

edges have the same strength. (a) All-to-all interaction for a 1D chain (left) and a 2D

crystal (right). (b) Dimer model for a 1D chain (left) and a 7-ion 2D crystal (right).

The 1D case scales to arbitrary N , with the central ion decoupled from the rest for odd

N . The 2D case has perfect fidelity for geometries with a single ion in the center and

an even number of ions contained in surrounding circular rings. (c) The connections

within a 2D triangular-lattice crystal of N = 7 may be modified using global beams to

yield ring, decoupled trimer, and star-like interactions. The sum of these three graphs

in (c) is equivalent to the all-to-all model from (a).

ion geometry with a set of transverse motional modes can support an exact all-to-all

interaction, independent of geometry or ion number. This follows directly from equation

(3), where it can be seen that a COM mode (with mode vector b⃗COM = {1, 1, . . . 1}) is
always an eigenvector of the Aij matrix. The existence of this COM mode then permits

implementation of an exact all-to-all interaction following the approach outlined above.

3.2.2. Interacting Dimer Model Another graph that can be simulated with perfect

theoretical fidelity is a collection of non-interacting dimers (figure 4(b)). For 1D ion

chains, this exactly realizable model scales to arbitrary chain sizes, with an uncoupled

ion at the center ifN is odd. These dimerized interactions can be generated by selectively

driving the spatially symmetric normal modes, or alternatively (following equation (11)),

by only coupling to the anti-symmetric ones. In addition, this interaction graph for small

N can be generated within 2D crystals, as shown in figure 4(b), right.

Since any linear combination of accessible interaction graphs is also accessible,

combinations of the all-to-all interaction with the interacting dimer model can generate

novel connections between spins. For instance, in [45], the authors produce a 4-ion ring

graph by subtracting two interacting dimers from an all-to-all coupling. Likewise, in [46],

the technique of driving multiple modes is extended to 6- and 8-ion systems to generate

nearest-neighbor interactions on a sphere and a hypersphere, respectively. Such linear

combinations of exactly solvable models illustrate the flexibility of interactions which

are accessible with global beams.

3.2.3. Modified 2D Lattices For two-dimensional ion crystals, driving appropriate sets

of transverse vibrational modes enables modification of the native triangular-lattice

geometry. For example, the interactions within the 7-ion crystals shown in figure 4(c)

may be engineered to yield a ring, two decoupled triangular plaquettes, or a “star”-
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Figure 5. Sample interacting 1D spin models achievable with small infidelity I. (a)

Ising-type interactions with power-law decay. Solid lines: infidelity with optimized

mode weights ck. Dashed lines: single-beatnote method, same as in figure 3, shown

here for comparison. (b) Minimum infidelity for the ring graph for N vertices (ions),

using a linear ion chain. For 4 ions, the model is exactly realizable (I = 0). Vertex

relabeling (see Section 3.4) has been applied to find the minimum infidelity for each

N .

like central spin model. However, crystal symmetry plays an important role for exact

realization of an interaction graph; for general ion numbers, which contain many

dislocations within the 2D lattice bulk [29], it is unlikely that any choice of mode weights

{ck} will yield a perfectly symmetric modified graph.

As in the one-dimensional case above, the ability to make new graphs by combining

sets of other accessible graphs allows for broadened applications. For example, adding

the star graph to the ring graph in figure 4(c) makes for a system where the central

spin is highly frustrated and the ground state is highly entangled. Alternatively, the

combination of the 2D dimer graph from figure 4(b) and the trimer from figure 4(c)

is isomorphic to a 3D triangular prism graph, with a tunable ratio of intra-base to

inter-base coupling strengths.

3.3. Example Applications: Approximately Realizable Interaction Graphs

In addition to the exactly realizable models outlined above, we also consider sets of

interaction graphs for which the infidelity I is small but non-zero. For reference, we

consider small infidelities to be less than or equal to the typical 1−4% infidelities present

in most trapped-ion quantum simulations of long-range Ising models driven with a single

bichromatic tone [2]. We find that by coupling to multiple modes in parallel, numerous

interacting spin models may be realized with infidelities at the sub-1% level.

For example, we first revisit the Ising model with power-law interactions discussed

in Section 2.3 and figure 3. Compared to the typical method of driving with a

single bichromatic tone, utilizing multiple modes reduces the infidelity by a factor of

approximately 2 to 40, depending on ion number and interaction range α (figure 5(a)).

It will be shown in Section 4 that this model’s fidelity can be further improved by



Interaction graph engineering in trapped-ion quantum simulators with global drives 13

(b)

Ion i

Io
n 

j
(a)

Ion i

Io
n 

j

 = 0.0005  = 0.008Jexp,ij
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(norm.)
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0.5

Figure 6. Sample interacting 2D spin models achievable with small infidelity

I. (a) Ising-type interactions with power-law decay in a 2D crystal of N = 19

ions, {ωx, ωy, ωz} = 2π × {5, 5, 0.1} MHz, and interaction range α = 1.5. The

calculated infidelity is 0.05%. Top: graph of Jexp. Bottom: The desired Jdes and

the experimentally-achievable Jexp matrix elements shown on the same grid, in the

lower and upper triangles (respectively). (b) Optimized nearest-neighbor graph and

corresponding matrix elements using the same 2D crystal as (a). The calculated

infidelity is 0.8%.

engineering anharmonic axial confining potentials for the ion crystal. Likewise, nearest-

neighbor interactions with periodic boundary conditions (i.e. ring graphs) can also be

simulated with low infidelity. As introduced in Section 3.2.2, 1D ion chains can generate

the nearest-neighbor ring graph exactly for N = 4 using a linear combination of all-to-all

and dimer interactions. While exact solutions are no longer possible for N > 4 using

global beams, figure 5(b) demonstrates that the infidelity I remains low for moderately

sized chains.

Approximately realizable interaction graphs may be generated for 2D ion crystals as

well. For a 2D ion crystal, the Ising model with power-law decays may be implemented

with < 1% infidelity over a wide range of ion number and interaction lengths when

multiple modes are driven. Figure 6(a) shows the case of N = 19 and α = 1.5,

which is achievable with 0.05% infidelity. In addition, 2D crystals support the high-

fidelity realization of nearest-neighbor interactions, which are equivalent to a power-

law decay model with α → ∞. Figure 6(b) shows an example targeting nearest-

neighbor interactions in a triangular lattice of N = 19 ions, which is achievable with an
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Figure 7. Vertex relabeling can lead to significantly smaller infidelity I. (a) For

N = 4 and (b) N = 5 ions, relabeling vertices leads to a reduction of infidelity from

∼ 20% to < 1%. For each N , the initial choice of the desired graph and Jdes is shown

at the left, and at the right are the optimal ones after vertex relabeling.

implementation infidelity of 0.8%.

3.4. Vertex relabeling

In general, the infidelity I of a desired interaction graph Jdes may be reduced by

relabeling its vertices such that its physical properties are preserved, but it is better

adapted to the structure of the ion crystal motional modes. In graph theory language,

an interaction matrix can be thought of as the negative of the Laplacian matrix of

a corresponding weighted graph [40], as long as its diagonal entries are chosen to

null the sum of each row and column. Each ion is a vertex, and each spin-spin

coupling is an edge with a weight corresponding to the strength of that interaction,

including its sign. Changing the labels of the vertices does not change the physical

meaning of that interaction graph. However, this relabeled (“isomorphic”) graph has

a different Laplacian matrix, and its best experimental approximation Jexp is different

in general. It is therefore advantageous to consider all possible isomorphic graphs with

relabeled vertices so that the one with highest fidelity may be selected for experimental

implementation.

An example of such an advantage is shown in figure 7 for ring graphs with N = 4

and N = 5 ions. In each case we begin with an intuitively drawn graph where vertex

indices increase monotonically around the ring, corresponding to the simple labeling of

ions in a 1D chain from left to right. However, in both cases such connection graphs are

only poorly implementable using global beams, with infidelities I of ∼ 20%. Relabeling

the vertices to better align with the underlying mode symmetries, as shown in figure 7,

unlocks the ability to implement these graphs with perfect or near-perfect fidelity.

Formally, vertex relabeling corresponds to the action of a permutation matrix P on
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the initial desired matrix:

PJdesP
T = J ′

des. (17)

To find the optimal J ′
des, the brute force approach is to apply allN ! possible permutations

P to the vertex labels and choose the one that leads to the smallest implementation

infidelity. Unfortunately this method scales poorly, with approximately 4 million

possible permutations for N = 10. While an efficient algorithm to this end is beyond

the scope of this paper, we suggest that computational speedups may yet be realized.

For instance, the symmetry of the ion motional modes dictates that a high-fidelity

solution J ′
des should be symmetric across its anti-diagonal; permutations that strongly

violate this condition should be discarded. Applying this straightforward constraint

significantly reduces the number of permutations which must be tested before finding

an optimal result.

4. Expanded set of interaction profiles using shaped potentials

In Section 2.2 we showed that accessible interaction graphs are determined by the

underlying mode interaction matrices J (k), which themselves arise due to the ions’

motional modes within the trap potential. Most commonly, the potential along all

three spatial axes is well approximated by a single quadratic (harmonic) term. In this

section we examine what might be gained by allowing the axial confinement to contain

anharmonic contributions to the potential, while keeping the transverse directions

harmonically confining. We focus on linear chains and investigate two axial anharmonic

potentials as examples. In both cases, the extra degrees of freedom gained by shaping

the anharmonic terms allow for improved or expanded quantum simulation capabilities

using global beams.

4.1. Equispaced 1D Ion Chains

When a 1D ion chain is confined within a harmonic axial potential, the balance of

Coulomb interactions and the trapping fields leads to a clustering of ions near the

center of the well. Here, we consider adding higher-order terms to the potential such

that the inter-ion spacings are as uniform as possible, as shown in figure 8(a) [47].

Such equispaced ion chains have been investigated previously due to their potential

advantages for cooling, computation, and detection [48–53].

Beyond these features, equispaced ion chains exhibit a fundamental property which

makes them advantageous for improved interaction-graph engineering: their transverse

mode vectors Bik are well approximated by the sinusoidal functions

Bik ≈
√

2− δk,1
N

cos
(2i− 1)(k − 1)π

2N
. (18)

Figure 8(b) shows a comparison between the exact normal mode vectors Bik of a 20-ion

equispaced chain and the sinusoidal-mode approximation of Eq. 18, with discrepancies
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Figure 8. (a) Anharmonic axial potential Vaxial with ω̃z = 2π×0.1 MHz. For N = 20

ions, this potential leads to a uniform spacing of ions (shown above). (b) The spectrum

of transverse normal modes is modified by the anharmonic axial potential. Two mode

vectors b⃗k (colored bars) are plotted overlaid with the sinusoidal approximation of

equation (18) (dashed lines), showing near-perfect agreement. The corresponding J (k)

matrices, displayed below, inherit the sinusoidal structure of the mode vectors.

at the level of ≈ 1%. As will be demonstrated below (and proven in Appendix C &

Appendix D), systems with sinusoidal modes enable new types of interaction graphs

to be implemented with perfect theoretical fidelity, while also maintaining the exact

realization of all-to-all and dimer interactions introduced in Section 3.2.

The result that equispaced ions lead to sinusoidal modes arises from the structure

of the Aij matrix (equation 3) when |ui − uj| ∝ |i − j|. For equispaced chains, the

dth-subdiagonal of the Aij matrix has a constant value inversely proportional to d3, and

the diagonal is approximately constant. This structure is reminiscent of the scenario of

a series of harmonic oscillators coupled with springs, providing an intuitive explanation

for the sinusoidal form of the eigenvectors in (18). In the limit N → ∞, the diagonal is

exactly constant and the Aij matrix takes on an infinite Toeplitz form which is known

to have sinusoidal eigenvectors [54]. (The observation that equispaced ion chains exhibit

sinusoidal modes in the N → ∞ limit was also highlighted in Ref. [47]). We note that

these results are not applicable for the central ions of a harmonically confined chain,

which have often been used as a proxy when equal spacing is desired; true anharmonic

confinement is required to obtain the mode vector properties discussed above.

In both the finite and infinite limits, equispaced ion chains can support the same

exactly realizable interaction graphs as discussed for harmonic axial confinement in

Section 3. Two shared properties between the harmonic and anharmonic potentials

lead to this result. First, the highest-frequency transverse mode in both cases is an

equal-amplitude COM motion; this guarantees that equispaced chains can admit all-to-

all spin-spin interactions with theoretically perfect fidelity. Second, the modes of both
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Figure 9. Infidelity of interaction models for equispaced 1D chains, using transverse

motional modes and a trapping potential as in figure 8. (a) Infidelity of the nearest-

neighbor model as a function of system size. (b) Solid lines: Power-law model infidelity

for various system sizes as a function of interaction range α. Compared to the single-

beatnote method (dashed lines), equispaced chains yield a smaller infidelity by at least

an order of magnitude. (c) Infidelity of the ring graph, the two-leg rectangular ladder,

and the ANNNI model with Ji,i+2 = −Ji,i+1/2.

harmonically confined and equispaced chains alternate between spatially symmetric and

anti-symmetric; equal coupling to all modes with a given parity then produces the same

dimer-type interactions as in Sec. 3.2.2.

Beyond these examples, equispaced ion chains open the possibility to realize

additional interaction graphs with near-perfect or exactly perfect fidelities in the finite

and infinite-ion limits, respectively. For example, figure 9(a) shows the infidelity for

realizing a nearest-neighbor spin-spin interaction within a 1D chain of equispaced ions.

Interestingly, the theoretical fidelity of implementing this spin model improves for large

system sizes. This is a consequence of the underlying mode structure: perfectly-nearest-

neighbor interactions can be generated by sinusoidal modes (as proven in Appendix D),

which are better and better approximated by the ion chain modes in the large-N limit.

Once more, we revisit the Ising model with power-law interactions and compare

the performance of an equispaced chain to the standard approach first highlighted in

figure 3. When combining shaped potentials with the multi-mode driving methods of

Section 3, we find that the infidelity of power-law Ising interactions may be reduced

by one to two orders of magnitude compared to the single bichromatic tone method

(figure 9(b)). In addition, unlike the single-tone approach, we observe that power-law

interactions which decay faster than ∼ 1/r3 are accessible with low infidelity using

anharmonic potentials. Such improved flexibility would allow the study of, for instance,

interacting dipolar and van der Waals systems [55–57] which were previously inaccessible

to trapped-ion simulators with global beams.

While an exhaustive list of spin models realizable with high fidelity using equispaced

ions is beyond the scope of this section, we conclude with three additional examples in

figure 9(c). First, we reconsider the ring topology introduced in figure 5(b). Utilizing
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Figure 10. (a) Double-well axial potential Vaxial with a confining (positive) quartic

term and an anti-confining (negative) quadratic term. For sufficiently large central

barrier, the ion chain is split into two approximately decoupled groups. (b) At this limit

of large separation between the left and right ion groups, the spectrum of transverse

normal modes features N/2 pairs of modes. Each near-degenerate pair consists of an

even-symmetric mode and its odd-symmetric sibling, which contains opposite signs of

ion participation amplitudes in the left and right halves of the chain. Driving both

pairs results in a near-perfect decoupling of interactions between the wells.

the modes of an equispaced ion chain again yields over an order-of-magnitude reduction

in the infidelity, with I < 0.004 for any number of ions. Next, we show comparably low

infidelities for a spin-ladder geometry which replicates a 2D lattice using a 1D equispaced

ion chain. (We note that perfect theoretical fidelity may be achieved following the

method of [58], where an uncoupled “spacer” ion is placed at the center of the chain).

Finally, low infidelities may be realized for the Anisotropic Next-Nearest Neighbor Ising

(ANNNI) model [59], which is known to exhibit complex phase diagrams and large

frustration due to competing nearest- and next-nearest-neighbor interactions.

4.2. Double-Well Potentials

To further illustrate how anharmonic axial potentials may enable new interaction graphs,

we consider the case of a double-well potential (figure 10(a)). In this configuration,

which may be engineered by applying positive voltages to a central set of electrodes, the

chain separates into two sets of ions with large Coulomb interactions within each well

and small Coulomb interactions across wells. Here we consider a double well created

by combining a confining quartic term with an anti-confining quadratic term, though

generic implementations featuring a central “bulge” will show the same qualitative

features.

In double-well potentials, the transverse modes of the chain lead to a nearly-perfect

decoupling of interactions across the central barrier. For N ions, the transverse mode

spectrum contains N/2 pairs of frequencies, each of which is approximately degenerate

(figure 10(b)), with perfect degeneracy reached in the limit of infinitely separated
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wells. For the experimentally feasible configuration shown in figure 10, the frequency

separation between mode pairs is calculated to be 40 Hz for the COM mode, and < 1 Hz

for the zig-zag mode. At each frequency, one of the near-degenerate mode eigenvectors

exhibits in-phase motion between ions in separate wells while the other exhibits out-

of-phase motion between the wells. Since the modes appear in pairs, any driving laser

tone will couple near-equally to both the in-phase and out-of-phase motions. The result

is a block-diagonal interaction matrix, where inter-well interactions are canceled and

intra-well interactions are dictated by the local mode structure.

For double-well potentials, illuminating the whole chain with the same beam

generates the same quantum dynamics for two identical sets of effective spins.

Parallel wavefunction evolution (using local addressing) has already found utility in

measurements of the second-order Rényi entropy to quantify bipartite entanglement in

many-body systems [60,61]; here, the state preparation could be performed exclusively

using global beams. More generally, if the separately-evolving wavefunctions in both

wells are later brought together by reducing or eliminating the central barrier, they may

be used to simulate complex systems in materials science and chemistry. For instance,

strong local interactions (within each well) followed by relatively weaker interactions

between wells takes the form of a Matrix Product State, which has been used in

condensed matter physics to describe 1D systems with limited entanglement as well

as quasi-2D systems [62, 63]. Furthermore, such setups of weak interactions between

strongly coupled 1D systems closely replicate the behavior of chemical nuclear dynamics

with multiple interacting nuclear degrees of freedom [64, 65], allowing for extensions to

the 1D chemical dynamics simulations already performed with trapped ions [11].

5. Discussion and Outlook

In this work, we have described a variety of interaction graphs which are implementable

with global beams and have analyzed their maximum possible theoretical performance

via the infidelity metric I. This approach abstracts away from common sources of

experimental noise, such as trapped-ion heating or photon scattering, which limit

the performance of trapped-ion quantum gates [6, 15]. Thus the total infidelity of

implementing the spin-spin interactions described above will depend on both the

theoretical minimum infidelity I, as well as the experimental errors specific to each

apparatus.

Nevertheless, we highlight two experimental considerations of primary importance

for reducing errors during quantum simulations with engineered interaction graphs.

First, as described in Section 3, successful interaction engineering relies upon an

appropriately weighted sum of J (k) matrices, each with weight ck. Following the methods

in Refs. [35, 39], arbitrary weights may be generated via the application of 2N + 1

bichromatic beatnotes µm, each with their own Rabi frequency Ωm. However, this

suggests that motional-mode frequency drifts (due to drifts in the rf voltage and/or

frequency, for instance), or laser intensity fluctuations (due to power fluctuations or
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Figure 11. Infidelity of realizing the nearest-neighbor model in a 1D chain of N

ions, confined in an axial potential with terms up to polynomial order nmax (equation

(1)). Shaping the anharmonic confinement with more degrees of freedom leads to lower

infidelity. For all ion numbers N ≤ 70, infidelities of I < 0.01 are achievable using

potentials with nmax = 6 (requiring 3 sets of independently controlled dc electrodes).

pointing instability), will have outsized effects in limiting the experimental fidelity.

Beyond the straightforward mitigation strategies of rf [66] and laser stabilization, we

note that even more bichromatic beatnotes may be added to reduce the sensitivity of

mode weights to frequency and intensity fluctuations. In Ref. [67], for instance, the

authors demonstrate that additional beatnotes may be used to reduce the infidelity of

a standard Mølmer-Sørensen gate by nearly an order of magnitude in the presence of

∼ 5% amplitude and mode frequency errors.

Second, as described in Section 4, utilizing strings of equispaced ions further

improves or expands upon the quantum simulation possibilities achievable with global

beams compared to the harmonic case. However, following the analysis presented in [47],

perfectly equispaced ion chains are idealized since they require control over an infinite

number of anharmonic potential terms. Motivated by prior work such as [49], which

achieve nearly equispaced chains by controlling only the second and fourth order terms

in the axial potential, we quantify the expected experimental errors arising from non-

uniform ion spacings. Figure 11 considers the infidelity I of realizing nearest-neighbor

interactions in a 1D chain of N ions, when only terms up to polynomial order nmax are

used to shape the axial potential (equation (1)). We find that only the first few potential

orders are required to keep the infidelity at or below the 1% level, even for large system

sizes, and remark that a symmetric potential of order nmax may be implemented within

an ion trap using nmax/2 sets of symmetric dc electrodes.

We have presented a suite of techniques for expanding the reach of quantum

simulations using exclusively global beams. We have shown that by driving all available

vibrational modes with appropriate weights, previously inaccessible spin-spin coupling

graphs become implementable in trapped-ion simulators with perfect or near-perfect

fidelity. We developed a simple but rigorous test to determine whether a desired
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interaction profile may be perfectly mapped to a trapped-ion system given its set of

vibrational normal modes. Additionally, we showed that further high-fidelity classes

of spin-spin interactions become achievable by considering shaped anharmonic axial

potentials. Taken together, these tools make a wide range of new problems in materials

science and chemistry accessible to ion-trap quantum simulators, while avoiding the

experimental overhead and complexity associated with locally addressed entangling

interactions.
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Appendix A. Proof of equation (11)

The N×N mode vector matrix B is the modal matrix of A, which is real and symmetric.

As such, B is orthonormal. One of its properties is then

BBT = BTB = I. (A.1)

or

(BBT )ij = δij. (A.2)

We re-write this as,

(BBT )ij =
∑
k

Bik(B
T )kj =

∑
k

BikBjk

and using (8) this becomes:

(BBT )ij =
∑
k

J
(k)
ik ⇒ δij =

∑
k

J
(k)
ik

or in matrix form ∑
k

J (k) = 1.
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Appendix B. Proof of equation (14) for harmonic confinement

In this section we provide the proof for equation (14). Let us assume that a desired

interaction matrix Jdes can be decomposed as a linear combination of J (k)’s:

Jdes =
∑
k

ckJ
(k), ck ∈ R (B.1)

⇔ Jdes,ij =
∑
k

ckBikBjk (B.2)

⇔ Jdes,ij =
∑
k

ckBik(B
T )kj (B.3)

⇔ Jdes,ij =
∑
k

∑
l

BikCkl(B
T )lj (B.4)

where C is a diagonal matrix with the weights ck in its diagonal:

C ≡ diag({ck}) (B.5)

In matrix form, (B.1) reads

Jdes = BCBT ⇔ BTJdesB = C (B.6)

We note that with the convention that Jdes is provided as input in the graph Laplacian

form, i.e. with its diagonal chosen to zero the sum of each row and column, the set of

{ck} in the relations above is unique, and the center-of-mass mode’s weight is always

zero: cCOM = 0. However, the diagonal of an interaction matrix bears no physical

significance. This provides the experimental flexibility, after a set of mode weights

{ck} has been found, to add a constant to all of them, without changing the physical

interaction matrix, such that for example the center-of-mass mode’s role is diminished,

since it is especially prone to ion heating.

Appendix C. Accessibility of the dimer model

We start by showing that the dimer model is accessible for sinusoidal transverse modes

given by equation (18):

Bjk =

√
2− δk,1

N
cos

(2j − 1)(k − 1)π

2N
. (C.1)

The mode interaction matrices then take the form

J
(k),sin
ij =

2− δk,1
N

cos
(2i− 1)(k − 1)π

2N
cos

(2j − 1)(k − 1)π

2N
. (C.2)

We will show that coupling equally to every other mode results in the pair-wise

interaction model shown in figure 4(b). To this end, we will calculate the sum of the

mode interaction matrices, assuming N is even for simplicity

J ≡ J (2) + J (4) + J (6) + . . . (C.3)



Interaction graph engineering in trapped-ion quantum simulators with global drives 25

which is

J =
2

N

N∑
k=2,4,6,...

cos
(2i− 1)(k − 1)π

2N
cos

(2j − 1)(k − 1)π

2N
(C.4)

=
2

N

N−1∑
k=1,3,5,...

cos
(2i− 1)kπ

2N
cos

(2j − 1)kπ

2N
(C.5)

Using the product-of-cosines identity,

J =
1

N

N−1∑
k odd

cos
kπ

N
(i+ j − 1) + cos

kπ

N
(i− j) (C.6)

We will now use the identity

n∑
κ=1

cos(2κ− 1)a =
sin 2na

2 sin a
, a ̸= lπ, l ∈ Z, (C.7)

re-written as
N−1∑

k=1,odd

cos ka =
sinNa

2 sin a
, a ̸= lπ, l ∈ Z. (C.8)

for each of the two terms inside the summation in (C.6), with a → π(i + j − 1)/N

for the first term and a → π(i − j)/N for the second term. We note that the only

values of i, j ∈ [1, N ] that these a’s can be equal to lπ, l ∈ Z, are for l = 1 and

l = 0 respectively. So, the values of i, j for which the identity (C.7) does not apply are

i + j − 1 = N ⇒ j = N − i + 1 and i − j = 0 ⇒ j = i. For all i, j except for these

values, we have

Jij =
1

N

sin π(i+ j − 1)

2 sin π(i+j−1)
N

∣∣∣∣∣
i+j−1̸=lπ

+
1

N

sin π(i− j)

2 sin π(i−j)
N

∣∣∣∣∣
i−j ̸=lπ

= 0 (C.9)

For the mentioned values of i, j where identity (C.7) does not hold, we have

• j = N − i+ 1 (i.e., the anti-diagonal of J)

Jij|j=N−i+1 =
1

N

N−1∑
k odd

cos k π

N
0︸ ︷︷ ︸

=1

+cos k
π

N
(2i−N − 1)

 (C.10)

=
1

N

[
N

2
+

sin[π(2i−N − 1)]

2 sinπ/N(2i−N − 1)

]
(C.11)

For even N , there are no values of i that zero the sine in the denominator, and we can

replace it with zero since its numerator is an integer multiple of π ∀i, N :

Jij|j=N−i+1 =
1

2
. (C.12)
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• j = i (i.e., the diagonal of J)

Jij|j=i =
1

N

N−1∑
k odd

cos kπ
N

(2i− 1) + cos
kπ

N
0︸ ︷︷ ︸

=1

 (C.13)

=
1

N

[
sin π(2i− 1)

2 sinπ/N(2i− 1)
+

N

2

]
(C.14)

For even N , there is no value of i ∈ [1, N ] that zeroes the sine in the denominator.

Therefore, similar as before, that term is always zero, and we can write

Jij|j=i =
1

2
(C.15)

In combination, (C.9), (C.12), and (C.15) show that J is a sparse matrix with values

of 1/2 in its diagonoal and anti-diagonal, which is the matrix representation of the

interacting dimers model.

The derivation above can be generalized to non-sinusoidal modes of harmonically

confined chains, where each mode vector is now a linear combination of the sinusoidal

mode vectors.

Appendix D. Accessibility of the nearest-neighbor model for sinusoidal

transverse modes

The transverse modes for equispaced chains of size N are well approximated by

Bjk =

√
2− δk,1

N
cos

(2j − 1)(k − 1)π

2N
. (D.1)

Here we show that the mode weights

ck = 2 cos
(k − 1)π

N
, k = 1, . . . , N (D.2)

result to a nearest-neighbor model as long as the mode vectors are as in (D.1). The

mode interaction matrices now take the form

J
(k),sin
ij =

2− δk,1
N

cos
(2i− 1)(k − 1)π

2N
cos

(2j − 1)(k − 1)π

2N
(D.3)
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and the proposed mode weights lead to the interaction matrix

J =
N∑
k=1

ckJ
(k),sin
ij (D.4)

=
N∑
k=1

4− 2δk,1
N

cos
(k − 1)π

N
cos

(2i− 1)(k − 1)π

2N
cos

(2j − 1)(k − 1)π

2N
(D.5)

=
N−1∑
k=0

4− 2δk,0
N

cos
kπ

N
cos

(2i− 1)kπ

2N
cos

(2j − 1)kπ

2N
(D.6)

=
2

N
+

4

N

N−1∑
k=1

cos
2kπ

2N
cos

(2i− 1)kπ

2N
cos

(2j − 1)kπ

2N
(D.7)

=
2

N
+

4

N

N−1∑
k=1

cos
(2i− 3)kπ

2N
cos

(2j − 1)kπ

2N
+ cos

(2i+ 1)kπ

2N
cos

(2j − 1)kπ

2N
.(D.8)

Using the cosine-cosine product trigonometric identity twice:

Jij =
2

N
+

1

N

N−1∑
k=1

[
cos

k(i+ j)π

N
+ cos

k(i− j + 1)π

N
(D.9)

+ cos
k(1− i+ j)π

N
+ cos

−k(i+ j − 2)π

N

]
(D.10)

Now we use Lagrange’s trigonometric identity for each of the 4 sums in (D.10). We will

explicitly replace the first term, and use “. . .” for the other three for now.

Jij =
2

N
+

1

N

[
−1

2
− cos(i+ j)π +

sin[(2N + 1) (i+j)π
2N

]

2 sin[ (i+j)π
2N

]
+ . . .

]
(D.11)

=
2

N
+

1

N

[
−1

2
− cos(i+ j)π +

sin[(1 + 1/(2N))(i+ j)π]

2 sin[(i+ j)π/(2N)]
+ . . .

]
(D.12)

=
2

N
+

1

N

[
−1

2
− cos(i+ j)π +

1

2
(1− δi+j,2N) cos(i+ j)π +

1

2
δi+j,2N(2N + 1) + . . .

]
=

2

N
+

1

N

[
−1

2
− 1

2
cos(i+ j)π +

1

2
δi+j,2N(2N + 1− cos(i+ j)π) + . . .

]
(D.13)

The first cosine term, plus the rest three homologous terms at the “. . . ” part of the

sum add to zero for all integers i, j. Also, the terms involving the Kronecker delta are

the values of i, j for which the denominator with the sine at (D.12) equals zero. After

some algebra, we can write

Jij =
2

N
+

1

2N
[−4 + 2N(δi+j,2N + δi−j+1,0 + δ−i+j+1,0 + δi+j−2,0)] (D.14)

or equivalently

Jij = δi+j,2N + δi+j,2 + δi−j,1 + δi−j,−1 (D.15)

which is the nearest-neighbor matrix, with 2 inconsequential nonzero diagonal entries:

J1,1 and JNN .
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