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ABSTRACT: The accurate computational determination of
chemical, materials, biological, and atmospheric properties has a
critical impact on a wide range of health and environmental
problems, but is deeply limited by the computational scaling of
quantum mechanical methods. The complexity of quantum
chemical studies arises from the steep algebraic scaling of electron
correlation methods and the exponential scaling in studying nuclear
dynamics and molecular flexibility. To date, efforts to apply
quantum hardware to such quantum chemistry problems have
focused primarily on electron correlation. Here, we provide a
framework that allows for the solution of quantum chemical nuclear dynamics by mapping these to quantum spin-lattice simulators.
Using the example case of a short-strong hydrogen-bonded system, we construct the Hamiltonian for the nuclear degrees of freedom
on a single Born−Oppenheimer surface and show how it can be transformed to a generalized Ising model Hamiltonian. We then
demonstrate a method to determine the local fields and spin−spin couplings needed to identically match the molecular and spin-
lattice Hamiltonians. We describe a protocol to determine the on-site and intersite coupling parameters of this Ising Hamiltonian
from the Born−Oppenheimer potential and nuclear kinetic energy operator. Our approach represents a paradigm shift in the
methods used to study quantum nuclear dynamics, opening the possibility to solve both electronic structure and nuclear dynamics
problems using quantum computing systems.

I. INTRODUCTION

The quantum mechanical treatment of electrons and nuclei is
critical for a wide range of problems that are of significance to
biological, materials, and atmospheric studies. For example,
hydrogen transfer processes are ubiquitous in reactions critical
to human health, alternative energy sources, food security, and
environmental remediation.1 Yet, the detailed treatment of
such problems is confounded by the presence of nontrivial
quantum nuclear effects, such as hydrogen tunneling,2−6

coupled with electron correlation.7 For the study of electron
correlation in most molecular systems, several powerful
approximations have been developed for classical computing
platforms, and these are known to provide significant
speedups compared to exponentially scaling full-configuration
interaction calculations. Indeed, chemical accuracy may be
obtained for many systems using the well-known CCSD(T)
method8 that has an associated scaling cost of N( )6 7− ,
where N represents the number of electrons.
More recently, algorithms to solve electron correlation

problems in small molecular systems have been implemented
on quantum hardware devices using trapped atomic ions,
photons, nuclear spins, quantum dots, Rydberg atoms, and
superconducting circuits.9−20 The mapping of most electron
correlation problems to quantum hardware is facilitated by the

Jordan−Wigner, parity, or Bravyi−Kitaev transforma-
tions,21−23 where a product of Fermionic creation and
annihilation operators are transformed to a chain of Pauli
spin operators.
In contrast, the intrinsic spin statistics of quantum nuclear

dynamics problems, arising from the permutation symmetries
of the wavefunctions that describe the constituent nuclear
degrees of freedom, do not play a role under conditions
prevalent in biological, materials, and atmospheric systems,
such as hydrogen transfer reactions under ambient conditions.
As a result, most such quantum dynamics studies are currently
constructed on classical computing platforms using basis sets
and on grids. Furthermore, many of these problems are known
to display anomalous nuclear quantum effects2,24,25 that are
challenging to study on classical hardware due to the
exponentially scaling computational cost of quantum dynamics
with increasing degrees of freedom. Unlike several recent

Received: July 8, 2021
Published: October 25, 2021

Articlepubs.acs.org/JCTC

© 2021 American Chemical Society
6713

https://doi.org/10.1021/acs.jctc.1c00688
J. Chem. Theory Comput. 2021, 17, 6713−6732

D
ow

nl
oa

de
d 

vi
a 

IN
D

IA
N

A
 U

N
IV

 B
L

O
O

M
IN

G
T

O
N

 o
n 

A
pr

il 
21

, 2
02

2 
at

 1
3:

59
:4

6 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Debadrita+Saha"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Srinivasan+S.+Iyengar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Philip+Richerme"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jeremy+M.+Smith"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amr+Sabry"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.1c00688&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00688?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00688?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00688?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00688?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jctcce/17/11?ref=pdf
https://pubs.acs.org/toc/jctcce/17/11?ref=pdf
https://pubs.acs.org/toc/jctcce/17/11?ref=pdf
https://pubs.acs.org/toc/jctcce/17/11?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00688?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf


attempts on the electron correlation problem,9−20,26−30

approximating quantum nuclear dynamics problems on
quantum computing platforms has received relatively less
attention.31−37

The primary goal of this paper is to develop a set of
mapping protocols to allow the study of quantum nuclear
dynamics problems on quantum hardware that do not require
considering spin statistics. We provide and analyze an
approximate algorithm to map exponentially scaling quantum
nuclear dynamics problems on a single Born−Oppenheimer
surface, onto a general class of Ising model Hamiltonians.
Such Ising-type Hamiltonians may be implemented on a range
of quantum computing platforms, such as ion traps,38−42

superconducting coils,43 Bosonic processors with pho-
tons,44−46 solid-state devices and quantum dots inside
cavities,47−50 and Rydberg atoms.51,52 Since quantum nuclear
dynamics problems under ambient conditions do not need to
be encoded using a set of Fermionic or Bosonic operators, we
do not write the Ising model and molecular Hamiltonians in
their respective second quantized forms. Instead, we first
probe the structure of the Ising Hamiltonian matrix in its
exponential scaling space of spin basis vectors. This
exponential space is admittedly intractable. Yet, our analysis
of the Ising Hamiltonian matrix reveals an intrinsic structure
where specific blocks appear within the Ising Hamiltonian
matrix, and the corresponding matrix elements are only
controlled by a subset of the externally controlled field
parameters that dictate the dynamics of the model. To the
best of our knowledge, such a structure has never been noted,
or exploited, before in the literature. This structure allows us
to characterize the general class of problems that may be
“computable” using such hardware systems, and in this paper,
we further inspect the extent to which quantum chemical
dynamics studies may be conducted on such systems, when
the statistics of particle permutation need not be included.
The most significant features of the mapping algorithm are

summarized in Figure 1, with a more detailed illustration

provided in Figure 2. An example of a quantum nuclear
problem is shown in Figure 2a and also in Figure 1 (left).
Here, we depict a system containing a short-strong hydrogen
bond with anharmonic vibrational behavior along the donor−
acceptor axis. This problem is prototypical and is
representative of a broad range of systems that occur during
hydrogen transfer reactions2 and in hydrogen-bonded systems
that are known to have significance in many critical
processes.1 We precompute the Born−Oppenheimer potential
using electronic structure calculations and obtain a discrete
version of the quantum nuclear Hamiltonian. To map this

Hamiltonian onto a spin-lattice Ising-type model, the key
insights in this paper are as follows: (i) A projected subspace
of a specific unitary transformation of the diagonal elements of
the quantum nuclear Hamiltonian (related to the Born−
Oppenheimer potential) maps to and defines the local
magnetic fields applied on each lattice site of an Ising
model Hamiltonian. (ii) A similarly projected subspace of a
related unitary transformation of the off-diagonal elements of
the quantum nuclear Hamiltonian (related to the nuclear
kinetic energy operator) defines and is mapped onto the
intersite coupling terms in the Ising model. These features of
our map are highlighted in Figure 1. Importantly, we do not
use a quantum circuit model. Instead, the matrix elements of
the nuclear Hamiltonian that describe the molecular
dynamics, inform the choice of local magnetic fields applied
on each lattice site and laser pulse intensities that dictate the
intersite coupling, and govern the dynamics of the ion-trap
quantum computing platform. In this manner, we provide a
direct map of the two quantum systems. Thus, we take a
critical step toward solving quantum nuclear dynamics
problems, and more generally problems that may not obey
Fermi statistics, by mapping them to Ising-type Hamiltonians
realizable on ion-trap quantum hardware.
This paper is organized as follows: In Section II, we inspect

the block structure of the Ising Hamiltonian, which informs
the general class of problems that may be computable on
hardware architectures used to realize such Ising-type
Hamiltonians. Following this, we then introduce the quantum
nuclear Hamiltonian matrix on a single Born−Oppenheimer
surface in Section III and a class of Givens rotation53-based
matrix transformations in Section III.I to represent the
quantum nuclear Hamiltonian matrix in a form that is
commensurate with the transformed form of the Ising model
Hamiltonian in Section II. This transformation leads to our
approximate mapping protocol that is outlined in Section IV.
Numerical results for the anharmonic molecular vibrations of
the shared proton in a symmetric short-strong hydrogen-
bonded system are provided in Section V. These include
explicit numerical propagation of both the molecular dynamics
problem and the spin-lattice dynamics governed by Ising-type
Hamiltonian, where the Ising Hamiltonian parameters are
chosen based on the mapping protocol in Section IV. The
results match exactly for the case of three qubits, and error
estimates beyond three qubits are given in Section IV.
Conclusions are given in Section VI. Technical aspects of the
discussion are further supported through a set of appendices.

II. BLOCK STRUCTURE OF ISING-TYPE
HAMILTONIAN MATRICES OBTAINED FROM
APPROPRIATE CLASSIFICATION OF THE
COMPUTATIONAL BASIS

Ising-type Hamiltonians can be implemented on a range of
available quantum computing platforms,38,39,43−52 which
makes these one of the most commonly used quantum
computing models today.39,54 However, for specificity, we will
illustrate our mapping protocols for ion-trap-based quantum
architectures, where ions form defect-free arrangements and
can support quantum coherence times longer than 10 min.55

Interactions between ions map to interactions between
effective quantum spin states and quantum-harmonic-oscil-
lator bath stateseach of which can be precisely controlled
and programmed using laser light.56 Site-resolved detection of

Figure 1. Critical features of our mapping algorithm. The Born−
Oppenheimer potential as well as kinetic energy portions of the
molecular Hamiltonian are mapped to control parameters {{Bi

z};
{Jij

x, Jij
y, Jij

z}} of an Ising-type spin-lattice simulator.
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each ion’s spin state can be achieved with near-unit fidelity.57

These features have made trapped ions the leading platform
for establishing atomic frequency standards58 and one of the
leading candidates for performing quantum simulations and
quantum computations on such interacting spin sys-
tems.39,59−64

For ion-trap quantum hardware, the generalized Ising
Hamiltonian is represented by a spin-lattice of qubits, where
(a) the energy gap between the states at each qubit, i, and
their relative orientations, are controlled by local effective
magnetic fields, {Bi

x, Bi
y, Bi

z}, and (b) the spin−spin coupling
between different lattice sites, i and j, is controlled using laser
pulses, also spatially nonisotropic, and represented as
{Jij

x, Jij
y, Jij

z}. Thus, the most general Hamiltonian achievable
within the ion trap quantum hardware at low temperatures is

J BIT
i

N

j i

N

ij i j
i

N

i i
1

1

1

∑ ∑ ∑ ∑ ∑σ σ σ= +
γ

γ γ γ

γ

γ γ

=

−

> = (1)

where γ ∈ (x, y, z) and N is the number of qubits (or ion
sites). The quantities {σi

γ} are the Pauli spin operators acting
on the ith lattice site along the γ-direction of the Bloch sphere.
It is critical to note that the expression above is more general
than that commonly used in condensed matter physics and
quantum chemistry, where only nearest-neighbor interactions
are considered. In fact, the set of programmable Ising-type
Hamiltonians on an ion trap quantum computer depicts a
complete graph that connects all qubits in a spin-lattice system
with programmable interactions.65 This aspect is completely
captured in eq 1. Furthermore, a critical aspect that
differentiates a quantum computer evolving according to eq
1 from a quantum simulator is one where the quantum
computer can precisely address and control all {Jij

γ} values,
whereas a quantum simulator programs a single functional
dependence involving a {Jij

γ}, thus resulting in a reduced set of
controllable parameters.39,65,66

In this paper, we map the Born−Oppenheimer nuclear
Hamiltonian to eq 1, thus allowing the two quantum systems
to undergo analogous quantum dynamics. Toward this, the
parameters {Bi

γ; Jij
γ} are “programmed” as per the elements of

the classically determined Born−Oppenheimer nuclear Ham-
iltonian matrix. To arrive at such a map, we first examine the
intrinsic symmetries that are present within such generalized
Ising Hamiltonians.
The ion-trap Hamiltonian, IT , is naturally represented in a

bas i s o f 2N sp in s t a te s , where , fo r example ,
, , ,{ ↑↑ ↑↓ ↓↑ ↓↓ } form a basis for a two-qubit system.

These now provide us with a “computational basis” with
programmable handles, {Bi

γ; Jij
γ}. To gauge the set of mappable

problems, we introduce a general set of permutations on the
computational basis vectors to reveal a novel block structure
of the Ising Hamiltonian matrix. Specifically, the 2N spin states
are partitioned into two sets that are created by the span of
even and odd total spin raising operators. Toward this, the
basis vectors created using an even number of lattice-site spin
raising operators {Si

+} acting on the full down-spin state,

2 1 11 ,N − ≡ ··· ≡ ↓↓ ··· y i e l d t h e s e t ;{ ↓↓ ···
S S ;i j ↓↓ ···⟩+ + S S S S ;i j k l ↓↓ ···⟩ ···}+ + + + that is grouped as

part of one block of the ion-trap Hamiltonian. See the set of
vectors in Figure 3b, and the bottom left row of Figure 4,
where this idea is illustrated for a three-qubit system. For the
notation in this paper, we have used the binary representation
11 ··· for spin state ↓↓ ··· and the corresponding integer

representation 2 1N − obtained from the bit-sequence
encoded in 11 .···
Similarly, the states obtained using an odd number of

raising operators S S S S; ;i i j k{ ↓↓ ···⟩ ↓↓ ···⟩ ···}+ + + + are

grouped into a second block and are shown in Figure 3a
and on the bottom right row of Figure 4.

Figure 2. Algorithm that converts the Born−Oppenheimer potential surface and kinetic energy terms in a quantum nuclear problem to a set of
controllable parameters and facilitates the dynamical evolution of quantum states in an ion trap. Box (a) shows the Born−Oppenheimer potential
and kinetic energies for a short-strong hydrogen-bonded system. This system Hamiltonian is mapped onto an ion trap quantum simulator shown
in box (b). Discrete representation of the nuclear Hamiltonian and appropriate rotations yield ion-trap parameters {{Bi

z}; {Jij
x, Jij

y, Jij
z}} to determine

the Ising model used to control the dynamics of lattice spin states. Also see Figure 1.
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Thus, the two sets independently span S
n2

{ ↓↓ ···⟩}+ and

S ,
n2 1

{ ↓↓ ···⟩}+ −
where S+ is the total spin raising operator.

When the spin basis vectors are partitioned in this manner,
the Ising Hamiltonian in eq 1 separates into the block
structure that is illustrated in Figure 4 for a three-qubit
system. Specifically, the matrix that determines the time
evolution of the hardware system separates into two diagonal
blocks that can only be coupled by turning on {Bi

x; Bi
y}, and

this is shown in Figure 4 as part of the gray square. Thus,
eliminating these {Bi

x; Bi
y} fields would yield two separate

diagonal blocks allowing the treatment of systems that may
have a similar block structure. Similarly, the off-diagonal
matrix elements within each diagonal block are determined by
the laser field parameters, {Jij

x; Jij
y}. While the structure derived

here is completely general, it is illustrated in Figure 4 for a
three-qubit system. The diagonal elements of the matrix, not
shown in Figure 4 to maintain clarity, contain linear
combinations of {Bi

z; Jij
z}.

For a larger number of qubits, the block structure has a
recursive form, and this aspect is further elaborated in
Appendix A. This block form of the Ising-type Hamiltonian
and the associated structure in Figure 4 are a significant
general result in this paper, and as we find below, this analysis
is critical toward mapping arbitrary problems.

III. GRID-BASED QUANTUM NUCLEAR
HAMILTONIAN COMPUTED ON CLASSICAL
HARDWARE

The quantum nuclear Hamiltonian for the molecular system,
Mol, is constructed on classical hardware, for the purpose of

this paper. In the coordinate representation with basis
elements, {|x⟩}, the Hamiltonian matrix elements are given by

x x K x x V x x x( , ) ( ) ( )Mol δ⟨ ′⟩ = ′ + − ′ (2)

For local potentials, the potential energy operator, V̂, is
diagonal in the coordinate representation. The expression in

Figure 3. 2N spin (computational) basis states partitioned into (a)
the span of odd powers of the total spin raising operator acting on

the down-spin state S
n2 1

{ ↓↓ ···⟩}+ −
and (b) the span of even powers

of the total spin raising operator acting on the down-spin state

S .
n2

{ ↓↓ ···⟩}+ This partitioning is illustrated here for the case of three
qubits and leads to a block form of HIT as illustrated in Figure 4.

Figure 4. Upper triangular part (excluding the diagonal) of the Ising Hamiltonian, IT (eq 1), in the permuted computational basis illustrated for
a three-qubit system. Spin (computational) basis state kets, along with their corresponding binary and integer representations, are presented at the

base of the figure. These states are partitioned into odd, S ,
n2 1

{ ↓↓ ···⟩}+ −
and even, S ,

n2
{ ↓↓ ···⟩}+ spans of the total spin raising operators. The

interaction between any two states, |i⟩ and |j⟩, is the ijth matrix element of the ion trap Hamiltonian. For example, J JIT
x y

13 13⟨↑↓↑ ↓↓↓⟩ ≡ [ − ].

The off-diagonal block that couples the vectors obtained from the odd, S ,
n2 1

{ ↓↓ ···⟩}+ −
and even, S ,

n2
{ ↓↓ ···⟩}+ spans of the total spin raising

operators are marked by the gray square.
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eq 2 yields a continuous representation, and in practice, the
matrix and the corresponding vectors that the matrix acts on
are represented on a discretized Cartesian grid. In this case,
the Dirac delta function above is replaced by the Kronecker
delta. The potential energy in the above equation is obtained
from electronic structure calculations that may also be
performed on quantum hardware, independently, in future.
The kinetic energy operator may be approximated in a

number of ways. One approach is to recognize that this
operator is diagonal in the momentum representation, and
hence fast Fourier transforms are commonly employed.67 In
this paper, we employ an analytic banded Toeplitz distributed
approximating functional (DAF)68,69 representation for the
grid representation of the kinetic energy operator in eq 2

K x x K x x
m

x x

n
H

x x

( , ) ( )
4 2

exp
( )

2

1
4

1
2n

M n

n

2

3

2

2

0

/2

2 2

DAF

l
moo
noo

|
}oo
~oo

i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzz∑

σ π σ

σ

′ = | − ′| = −ℏ − − ′

−
!

− ′

=
+

(3)

The banded Toeplitz representation of the DAF approx-
imation for the kinetic energy operator, where the property of
its matrix elements, Kij ≡ K(|i − j |), has a critical role in
reducing the nuclear Hamiltonian to the form of IT ,
depicted in Figure 4. This is further elaborated in the

following section. In eq 3, ( )H n
x x

2 2 2 σ+
− ′ are the even-order

Hermite polynomials that only depend on the spread
separating the grid basis vectors, |x⟩ and |x′⟩, and MDAF and
σ are parameters that together determine the accuracy and
efficiency of the resultant approximate kinetic energy operator.
Appendix D provides a brief summary of the DAF approach
for approximating a function in general.
III.I. Unitary Transformations That Yield the Block

Structure of the Nuclear Hamiltonian, for Symmetric
Potentials, to Make These Commensurate with and
Mappable to the Spin-Lattice Hamiltonian, IT . The

nuclear Hamiltonian, Mol from eq 2, has a banded Toeplitz
structure due to the kinetic energy being expressed in terms of
DAFs. In general, the Hamiltonian in eq 2 represents a
multidimensional quantum dynamics problem, where the
number of dimensions directly corresponds to the number of
nuclear degrees of freedom. In this paper, we examine the
map between the Hamiltonian in eq 2 for symmetric one-
dimensional potentials and the Ising model Hamiltonian
discussed in Section II. Routes from here to unsymmetric
potentials and to problems in higher dimensions will be
considered as part of future publications. In the proton
transfer problem considered here, the one-dimensional
potential energy surface along the hydrogen transfer axis,
V(x) in eq 2, is a symmetric double well owing to the
isoenergetic donor and acceptor sites arising from the
symmetry of the system (Figure 2a). We exploit the
symmetric structure of the potential and the Toeplitz structure
of the kinetic energy operator to construct a unitary
transformation that block-diagonalizes the nuclear Hamilto-
nian.
The unitary transform that leads to the block diagonaliza-

tion of the nuclear Hamiltonian, similar to the structure of the
Ising Hamiltonian, can be expressed as a product of Givens
rotations. The effect of the Givens rotations on the grid basis
states is to create superposition states of the symmetric grid

basis states. To explain this, we introduce a uniform one-
dimensional set of 2N grid points, x ,i{ } such that the Givens-
transformed grid basis, x ,i{ ̃ } may be represented as

x x x i n

x x n i n

1
2

, 0 ( 1)/2 (4)

1
2

, ( 1)/2 (5)

i i n i

i n i

̃ ⟩ ≡ [ ⟩ + ⟩] ≤ < +

≡ [ ⟩ − ⟩] + ≤ ≤

−

−

where n = 2N − 1. The grid basis and the Givens-transformed
grid basis, for a three-qubit system, are represented on the left
columns of Figure 5. Equations 4 and 5 form two mutually

orthogonal subspaces and are represented in the top and
bottom portions of Figure 5, separated by the dashed line.
These subspaces diagonalize the nuclear Hamiltonian for
symmetric potentials. This process is illustrated for a three-
qubit system (23-grid points) in Figure 6.
The ilth matrix element of the resultant molecular

Hamiltonian in the Givens-transformed grid basis is explicitly
written as

1
2

( )il i l l i n l i n i l i l n i n l
Mol

,
Mol

,
Mol

,
Mol

,
Molα α α α̃ = + + +− − − −

(6)

where αi = sgn[i − (n/2)]. The elements of the diagonal

blocks of
Mol̃ (matrix on the right in Figure 6) are obtained

from eq 6 as

Figure 5. Illustration of the mapping of the Givens-transformed grid
basis state representation, x ̃ (eq 5), for the discrete quantum
nuclear Hamiltonian to the permuted computational basis state
representation, λ ̃ (Section II), for the Ising model Hamiltonian.
The respective basis states map shown here for the case of three
qubits holds true and can be generalized to an arbitrary number of
qubits. The dashed line in the middle separates the two blocks of
each Hamiltonian.
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K x x K x x V x V x

1
2

( )

( , ) ( , )
1
2
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The elements of the unitary transform, αi, are, in fact, the
characters of the Cs point group. The right-hand side of the
above equation, therefore, represents a symmetry-adapted
transformation of the nuclear Hamiltonian, and the term
(1/2) [V(xi) + V(xn−i)] symmetrizes the potential energy
surface in one dimension. By extension, for the elements of

the off-diagonal blocks of
Mol̃ in Figure 6, αl = −αi and
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where the kinetic energy contribution is identically zero purely
due to the Toeplitz nature of eq 3, and only the antisymmetric
portion of the potential, (1/2) [V(xi) −V(xn−l)], contributes
to the antidiagonal part of

Mol̃ . Thus, for symmetric
potentials such as those considered here, eq 8 is identically
zero. This observation will become useful when we generalize
the approach presented here, first to general potentials and
then to problems of higher dimensionality in future
publications.

IV. MAPPING PROTOCOL FOR QUANTUM CHEMICAL
DYNAMICS

The structure of the ion-trap Hamiltonian constrains the class
of mappable problems. These constraints dictate the accuracy
with which quantum chemical dynamics simulations can be
performed on an ion-trap system given by eq 1. To summarize
our discussion thus far (see Figure 5), we began with a
computational basis λ used to describe the Ising Hamil-
tonian, IT in eq 1, and the grid basis x used to represent

the quantum nuclear Hamiltonian, Mol in eq 2. In the
interest of matching the structures of the two Hamiltonians,
we first obtained a permuted computational basis: λ λ→ ̃
(Section II, and also summarized on the right side of Figure
5) and a unitary (Givens) transformed quantum nuclear basis:
x x→ ̃ (Section III.I). In doing so, our goal becomes

x xMol
IT

Ù Ù
λ λ⟨ ̃ ′⟩ ↔ ⟨ ̃ ′⟩ (9)

where we first introduce a map between the transformed
quantum nuclear wavefunction bases and the permuted
computational bases that represent the Ising spin-lattice
system as

x λ⟩̃ ⇔ ⟩̃ (10)

This map is illustrated within the central box in Figure 5,
where the left side of the central box represents the Givens-
transformed grid basis and the right side represents the
permuted computational basis. Furthermore, the mapped basis
states are separated into blocks by a dashed horizontal line.
For the molecular Hamiltonian, the coupling across these
blocks is identically zero for symmetric potentials, while for
the Ising Hamiltonian, the coupling across these blocks is
identically zero when the terms Bi

x and Bi
y are eliminated from

eq 1 (see Figure 4). The effectiveness of the maps in eqs 9
and 10 will essentially dictate the accuracy to which the
dynamics captured within the ion-trap quantum simulator
controlled by an Ising Hamiltonian accurately predicts the
quantum nuclear dynamics.
In this section, we will show that, due to the structure of the

Hamiltonians discussed in the previous sections, the diagonal
and off-diagonal elements of each individual diagonal block of
mappable Hamiltonians, such as eq 2, are Hadamard-
transformed to provide {Bi

z; Jij
z} and {Jij

x; Jij
y}, respectively. As

a consequence of the discussion in Section III.I, both
Hamiltonians, eqs 1 and 2, by construction, take the form
depicted in Figure 2c and the right side of Figure 6,
respectively. Our quantum nuclear dynamics test case that will
be mapped to the aforementioned Ising Hamiltonian (Section

Figure 6. Illustration of the block diagonalization of the nuclear Hamiltonian, as captured by eq 6. (Left) Original Hamiltonian, Mol; (right)

transformed
Mol̃ . On the right side, specific matrix elements from each block of il

Mol̃ are highlighted to illustrate eqs 7 and 8. These

highlighted elements of il
Mol̃ are obtained by combining elements of Mol , as per eq 6, and these are marked using red and blue squares in

zoomed-in representations of matrix elements in Mol . Blue (negative) and red (positive) indicate the phase of the corresponding elements of
Mol, as obtained from αi in eqs 6−8.
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V) exploits the block structure discussed above, and we
illustrate the map by studying a symmetric hydrogen-bonded
system displayed in Figure 2a, where a symmetric double-well
potential is also shown. For these cases, as seen from eqs 8
and 7 and the discussion in Section II and eq A4 in Appendix
A, the block structure of both the Hamiltonian matrices allows
the two blocks of each Hamiltonian matrix (Ising and
molecular) to be propagated independently, and, potentially
on different quantum simulators, for the Ising Hamiltonian.
We exploit this feature to evaluate a separate set of {Bi

z; Jij
γ}

values, below, for each of the two diagonal blocks of the
molecular Hamiltonian, while maintaining {Bi

x; Bi
y} to be

identically zero.
IV.I. Obtaining Ion-Trap Parameters {Bi

z; Jij
z} from the

Diagonal Elements of the Molecular Hamiltonian. The
diagonal elements of the molecular Hamiltonian are directly
mapped to those of the spin-lattice Hamiltonian after invoking
the map of the unitary-transformed grid basis x( )̃ to the
permuted computational basis ( )λ ̃ . Each diagonal element of
the molecular Hamiltonian in the transformed grid repre-
sentation x xMol⟨ ̃ ⟩̃ is equivalent to the corresponding
element of the ion-trap Hamiltonian ITλ λ⟨ ̃ ⟩̃ in the
permuted computational basis representation. In doing so,
the set of on-site and intersite coupling parameters {Bi

z; Jij
z} of

the ion-trap that occur along the diagonal of IT
̃ can be

evaluated. The mapping expression between the diagonal
elements of the molecular Hamiltonian and the corresponding
elements of the ion-trap Hamiltonian may be written as

x x IT
Mol λ λ⟨ ̃ ⟩̃ ≡ ⟨ ̃ ⟩̃ (11)

Using eq 7 and eq 1, for the left and right sides of eq 11, we
obtain
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where ⊕ on the right side denotes the addition modulo 2 and
λ̃j is the jth bit of the bit representation of λ ̃ with values 0 or
1 for up- or down-spin, respectively, as shown in Figure 3 and
Figure 4.

Our goal is to use the diagonal elements of
Mol̃ to obtain

ion-trap parameters {Bi
z,Jij

z}. The expressions needed for this
purpose are derived from eqs 12 and 13, and a detailed
discussion on this map is provided in Appendix B. In
summary, we show in Appendix B that the ion-trap control
parameters {Bi

z; Jij
z} are specific Hadamard transforms of

x xMol⟨ ̃ ⟩̃, that is

x x B J;i
z

ij
zMol Hadamard

⟨ ̃ ⟩̃ ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯ { } (14)

This is a particularly key result in this paper, since the
Hadamard transforms, like Fourier transforms,70 are unitary
and hence the ion-trap parameters, {Bi

z; Jij
z}, are Walsh−

Hadamard-transform71 components of x xMol⟨ ̃ ⟩̃. However,
while this map is general for arbitrary number of qubits, we
will also describe in Appendix B that the linear trans-
formations between x xMol⟨ ̃ ⟩̃ and {Bi

z; Jij
z}, in eqs 11, 12 and

13, are rank-deficient and hence error estimates are also
presented in Appendix B that apply for arbitrary number of
qubits.
Before we conclude this section, we note that the map in

eqs 12 and 13 may be used for the potential-free particle in a
box case by eliminating the potential leading to
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V. PERFORMANCE OF THE MAPPING PROTOCOL
FOR A SYMMETRIC HYDROGEN-BONDED SYSTEM

We examine the map by simulating the quantum dynamics of
the molecular system and the ion-trap dynamics, on classical
hardware, independently. In doing so, we study the time
evolution of the initial wavepacket states prepared in the
respective permuted basis representations for the molecular
and Ising model Hamiltonians. As stated, the parameters in
the Ising Hamiltonian are determined, and thus controlled, by
the precomputed matrix elements of the molecular Hamil-
tonian. The specific intramolecular proton transfer problem
considered here is that in the protonated 1,8-bis-
(dimethylamino) naphthalene (DMANH+) system shown in
Figure 7a. The DMAN molecule has an extremely large
proton affinity of 242 kcal/mol,72 with DMANH+ pKa value in
the range of 12.1−12.3.73 As a result, the system is one of the
most frequently investigated proton sponges. The NHN+

hydrogen bond in proton sponges is attractive from the
point of view of both the nature of the short potentially
symmetric hydrogen-bond bridges,74−77 their infrared spectro-
scopic behavior, and their propensity to occur in common
nitrogen activation catalysts.78,79 Thus, the DMANH+ system
has been frequently studied as a model for short, low-barrier
hydrogen bonds that have a role in certain enzyme-catalyzed
reactions. In solution, the shared proton delocalization in
DMANH+ is controlled by a low-barrier symmetric double-
well potential, with barrier height being influenced by solvent
and temperature.80,81 In fact, the environment and variables
such as solvent and temperature influence the donor−acceptor
distance fluctuations, thus having a critical role in the
quantum mechanical nature of the shared proton. The effect
of these donor−acceptor variables is seen in Figure 7b, where
we present the shared proton one-dimensional symmetric
potentials (red curves on the right side of Figure 7b) for a
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range of donor−acceptor distances (left vertical axis in Figure
7b) with significant classical Boltzmann populations (black
horizontally placed histograms in Figure 7b) at room
temperature. Clearly, the barrier heights separating the
minima in the red curves as well as respective minimum-
energy positions are sensitive to donor−acceptor fluctuations
and influence the spectroscopic properties of such hydrogen-
bonded systems.82,83 To emphasize this, in Figure 7b, the light
gray vertical lines are positioned to approximately coincide
with the minimum-energy values for the red potential energy
surface at an NN distance of 2.83 Å. As the NN distance gets
smaller, the minimum-energy points get closer to each other
and changes the nature of the confinement potential in the
shared hydrogen nucleus. Here, the effects of all of these
aspects are studied by mapping the quantum nuclear dynamics
problem on multiple potential surfaces, obtained from
different donor−acceptor (NN) distances, to ion-trap
quantum simulators.
In the following subsections, we present the methods used

to classically precompute the nuclear Hamiltonian for each of
the donor−acceptor distances shown in Figure 7b and
simulate the quantum nuclear dynamics on these potentials

using the Ising model-based ion-trap simulators. We treat the
shared proton stretch dimension within the Born−Oppen-
heimer limit. The nuclear Hamiltonian is determined by the
ground electronic-state potential energy surface.

V.I. Precomputing the Molecular Hamiltonian ( Mol

in Equation 2) on Classical Hardware. To compute the
potential energy surface for the intramolecular proton transfer
in the molecular system DMANH+ (Figures 2a and 7a), we
locate a symmetric stationary point with the shared proton at
the center of the donor−acceptor axis. For the case of
DMANH+, this stationary point turns out to be a transition
state with one imaginary frequency that is obtained from the
eigenstates of the electronic structure Hessian matrix, with the
vibrational mode corresponding to the intramolecular proton
transfer direction. At this geometry, the shared proton is
symmetrically located between the donor and acceptor
nitrogen atoms. These calculations are performed using
standard electronic structure methods. The level of electronic
structure theory used is density functional theory with hybrid
functional, B3LYP, and an atom-centered Gaussian basis set
containing polarization and diffuse functions on all atoms, that
is, 6-311++G(d,p). Future work will also include mapping of
this Hamiltonian precomputation step onto quantum
hardware. A reduced dimensional potential energy surface
calculation for one-dimensional proton motion along the
donor−acceptor axis is performed at the aforementioned
stationary point geometry. This is also done for a set of
donor−acceptor distances with significant classical Boltzmann
populations as seen in Figure 7b. The potential energy
surfaces are obtained on a grid defined along the donor−
acceptor axis. We choose 2N number of equally spaced grid
points, symmetrically located about the grid center, and
perform electronic structure calculations at these points, on a
classical computing platform, at the level of theory mentioned
above. The molecular Hamiltonian is computed (eq 2) and
unitary-transformed to achieve a block structure according to
Section III.I.

V.II. Quantum Simulation of Proton Transfer
Dynamics. Given the block structure of both molecular
and Ising Hamiltonians in the permuted and Givens-
transformed basis representations, the initial wavepacket for
the ion-trap system is chosen as a coherent linear combination

of the spin basis states:
2{ }↑↑↑⟩ + ↓↓↓⟩ on a three-qubit system.

Given the block structure of the Ising Hamiltonian with
{Bi

x, Bi
y} turned off, the components of this initial state, ↑↑↑⟩

and ,↓↓↓⟩ are not coupled. Additionally, these states will not
couple as might be the case in the presence of B3

x − iB3
y in the

off-diagonal blocks: for example, pathways such as

B iB J Jx y x y
3 3 12 12↓↓↓⟩ ⎯ →⎯⎯⎯⎯⎯⎯ ↑↓↓⟩ ⎯ →⎯⎯⎯⎯⎯ ↑↑↑⟩

− −

will remain unpopulated. Hence, in essence, ↑↑↑⟩ gets
propagated as per the unitary evolution corresponding to
the top diagonal block of the Ising Hamiltonian and ↓↓↓⟩ as
per the bottom block. This critical feature allows us to treat
the two separated blocks as arising from two different ion
traps with two different sets of {Bi

γ; Jij
γ} parameters. Given the

direct map in eq 10 between the permuted computational
basis and the Givens-transformed molecular grid basis, the
initial wavepacket for the molecular system is to be chosen in
an analogous manner to the initial wavepacket of the ion-trap,

Figure 7. (a) Molecular geometry for DMANH+ with the shared
proton potential surface shown in red. The quantum mechanical
nature of the shared proton allows it to be simultaneously present in
both wells, and here, we use eq 1 to simulate the behavior of this
shared proton throughout mapping protocol in eq 9. (b) Change in
double-well potential (and barrier height) as a function of donor−
acceptor (N−N) distance. The bar heights show the classical
Boltzmann population for each N−N distance.
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which is
x x

2
0 7{ }̃ ⟩ + ̃ ⟩ . This essentially leads to the initial

wavepacket for the quantum nuclear dynamics problem as
being chosen on one end of the grid, that is, a state localized
closer to one of the nitrogen atoms in Figures 2a and 7a. This
choice results in the initial nuclear wavepacket being
symmetrically located at either end of the Givens-transformed
basis (eq 5). The spin-lattice and molecular wavepackets are
then independently propagated for each potential obtained for
different donor−acceptor separations and compared to gauge
accuracy of the quantum simulation.
Given the recursive form of the matrix representation of the

Ising Hamiltonian in eq 1, as discussed in Appendix A (see eq
A4), the ion-trap hardware initial wavepacket state is directly
propagated by the choice of {Bi

γ; Jij
γ} for arbitrary time

segments. In this study, we do not seek experimental
validation using a real ion-trap simulator but emulate the
time evolution of the ion-trap system according to the
Hamiltonian in eq 1 on classical hardware, using the
eigenstates of the Ising Hamiltonian in Appendix A. The
time-dependent probabilities resulting from the projection of
the resultant time-dependent wavepacket on the computa-
tional basis, at each interval of time, is shown using dashed
lines in Figures 8 and 9 for a donor−acceptor distance of

2.53 Å and for the full set of donor−acceptor distance values
in Figure 10. (The donor−acceptor distance of 2.53 Å
corresponds to the most stable structure, but as seen from
Figure 10, there are several other geometries that are also
populated (at 300K) even from a purely classical Boltzmann
estimation.) Similarly, we determine the time evolution of the
initial wavepacket for the molecular system using the

eigenstates of the transformed Hamiltonian in eq 6, and the
resulting probabilities from the projection of the time-
dependent wavepacket on the Givens-transformed grid basis

x{ ̃ } are shown using solid lines in Figures 8−10. The
probabilities match exactly, apart from numerical round-off
error (10−15), for the quantum simulation of the dynamics of
the two systems. Clearly, this is also true for much longer time
intervals as can be seen in Figure 9. Given the exact match
between the spin-lattice dynamics and the quantum chemical
dynamics, the features present in ion-trap dynamics must also
exist in the chemical dynamics problem. Thus, through the
isomorphism constructed above, our algorithm shows the
ability to probe any entanglement that may be present in
chemical systems.

VI. CONCLUSIONS AND OUTLOOK
The successful simulation of quantum nuclear dynamics on
quantum hardware promises a new paradigm for studying a

Figure 8. Dynamics of the molecular and the ion trap systems: The
integer (i) depicts the projection of a propagated state onto the ith
permuted spin basis state and the corresponding Givens-transformed
grid basis state for the ion-trap (dashed) and the molecular system
with dDA = 2.53 Å (solid), respectively. Note that all propagations are
conducted on classical platforms. The agreement of the quantum
dynamics in both systems is exact to within numerical round-off
(10−15). The two rows in the figure legend represent the two sets
spanned by odd and even spin raising operators, {S+}, acting on the
↓↓ ···⟩ spin state (dashed) and their corresponding Givens-
transformed grid basis states (solid) according to eq 10. An extended
set of dDA is shown in Figure 10, and results for a longer-term
dynamics for the most stable structure (dDA = 2.53 Å) are provided
in Figure 9.

Figure 9. Dynamics of the molecular system (solid) and the ion-trap
system (dashed) that show their exact match to within numerical
round-off (10−15) over long simulation times sufficient to capture the
molecular vibrational properties. Complements Figure 8. The
projection of the respective time-dependent wavepackets onto basis
vectors within each of the two decoupled blocks is shown separately
for clarity.
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broader class of coupled electron nuclear transfer problems. In
this study, we provide a general but approximate mapping
procedure between a quantum chemical dynamics problem,
constructed on a single Born−Oppenheimer surface, and an
ion-trap quantum simulator where the dynamics is dictated by
a generalized form of the Ising model Hamiltonian. The key
step involved in facilitating our map is the partitioning of the
coupled qubit space into two zones using only odd or even
powers of the total spin raising operators that are used to
generate such a coupled qubit space. Once the coupled qubit

computational basis set is partitioned in such a way, the Ising
model Hamiltonian reduces into a block form, thus allowing
the possibility to map all problems that may be written in a
similar block form. In some sense, we have also taken here the
necessary steps to detail the kinds of general problems that
can be solved exactly on a quantum system whose dynamics is
dictated by a generalized form of the Ising model
Hamiltonian. In this particular paper, though, we consider a
symmetric proton transfer problem and then go on to show
how such a problem can be mapped to an ion-trap system and

Figure 10. Similar to Figure 8 but for multiple donor−acceptor distances (dDA) between the nitrogen atoms for the molecule in Figure 2a.
Boltzmann populations (ρB) are computed at 300 K relative to the population of the configuration used in Figure 8 that has a dDA value of 2.53 Å.
The correlated changes in the |0⟩ and |7⟩ projections are clearly facilitated by components along other basis vectors, and these may have a critical
role in the reactive process as a function of temperature. The fact that the ion-lattice dynamics displays the same dynamical trends provides an
additional probe to complex chemical systems.
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also show that the dynamics of the two systems is identical
provided the parameters of the ion trap are chosen in concert
with that of the molecular system obtained from classical
precomputation. We also provide error bounds for this
approximate algorithm for arbitrary number of qubits.

General quantum nuclear dynamics problems, however,
have unsymmetric potential energy surfaces and are generally
performed in higher dimensions. This work will become
critical in extending our mapping protocol to general
potentials in higher dimensions, as will be considered in

Figure 11. Complements Figure 4. At the base of each figure are the computational basis state kets. The interaction between any two states ( )iλ ̃

and ( )jλ ̃ can be read off from the graph, by starting at the two states and following the lines to their intersection. The node at the intersection

gives the interaction between the two. For example, |2⟩ and |7⟩ in (c) have an off-diagonal matrix element of [J13
x − J13

y ]. The blank nodes are zero
and show the block diagonal form of the Ising Hamiltonian when {Bi

x; Bi
y} are set to zero.
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future publications. In addition, the next set of steps also
includes inspection of nuclear wavepacket basis set depend-
ence on the accuracy of the proposed map. Using appropriate
basis sets, it may be possible to reduce the number of
independent descriptors within the molecular Hamiltonian,
thus tailoring the accuracy of the map according to the
constraints provided in this paper.

■ APPENDIX A: RECURSIVE, BLOCK STRUCTURE OF
THE ISING HAMILTONIAN MATRIX

The Ising Hamiltonian matrix, HN, for a spin-lattice system
with N qubit sites, when written in the computational basis

partitioned according to sets that span S
n2

{ ↓↓ ···⟩}+ and

S ,
n2 1

{ ↓↓ ···⟩}+ −
may be recursively written in a blocked form

as

H
H B

B H
N

N
D1

N

N N
D2

Ä
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ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
=

†
(A1)

Here, both the diagonal blocks HN
D1 and HN

D2, and the off-
diagonal block BN are recursively defined as per

where I2N denotes an identity matrix of size 2N. The quantities
Jxy, N
1 and Jxy, N

2 are matrices that appear in the recursive
definition of the diagonal blocks, labeled with superscripts D1
and D2, respectively, and contain intersite coupling of the Nth
spin site with the remaining N − 1 sites. To arrive at the
matrix elements belonging to λ ̃ Jxy, N1 λ̃′ and λ ̃ Jxy, N2 λ̃′ in
the equation above, a bitwise XOR operation is constructed
between the corresponding computational bases, |λ̃⟩ and |λ̃′⟩.
The XOR operation provides the identity of the spin sites
where the computational basis vectors λ ̃ and λ̃′ differ, that
is, when the spin states are flipped between λ ̃ and .λ̃′ When
the bases differ at two spin-lattice site locations, i and j, the
corresponding matrix element of Jxy, N

1 or Jxy, N
2 is given by

Jij
x±Jij

y. The phase preceding the Jij
y values results from an

XNOR operation on the i, j lattice sites discovered through
the XOR operation above.
The terms, Jz,N

1 and Jz,N
2 , in eq A2 are also defined in a

similar manner. Both Jz,N
1 and Jz,N

2 matrices are diagonal in
form. Thus, the diagonal elements of HN

D1 and HN
D2 are

incremented by a linear combination of all possible intersite
couplings of the Nth spin site with the remaining N − 1 sites

given by J( 1)i
N

iN
z

1
1 i N∑ − λ λ

=
− ̃ ⊕ ̃

. (Also see eqs 12 and 13.)
As noted in the paper, setting all of the transverse local

qubit magnetic fields, Bi
x, and Bi

y values to zero in eq 1 block-
diagonalizes eq A2 and may be recursively written as
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(A3)

At this stage, it is critical to realize that the two blocks in
the equation above are completely decoupled and basis vector
components that undergo unitary evolution due to the top
block are never influenced by elements from the bottom block
and vice versa. This is explicitly elaborated in Figure 11 for
the case of two and three qubits. This presents us with an
additional degree of flexibility for our quantum simulation. We
exercise this flexibility here and map separately the top and
bottom blocks of the equation above, to two different N-qubit
ion trap systems controlled by parameters {Bi

z Jij
γ} and {B̃i

z Jĩj
γ},

respectively. It is important to note here that while the
underlying structure of each block in the Ising Hamiltonian
matrix remains the same, two different sets of ion-trap control
parameters are used to simulate the top and bottom blocks,
respectively, thus providing greater flexibility in simulating real
systems. We, therefore, introduce a subtle change in denoting
the corresponding Ising model Hamiltonian as N and allow
the diagonal blocks to be independently determined in the
following manner
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(A4)

where the top block is controlled by parameters {Bi
z; Jij

γ} and
the bottom block is controlled by a different set of ion-trap
parameters {B̃i

z Jĩj
γ}. The molecular Hamiltonian is mapped to

the above form of the Ising model Hamiltonian matrix.
We now illustrate the above form of Ising Hamiltonian for

the two- and three-qubit systems. But we note that the

aforementioned basis set partitioning and Hamiltonian
structure is completely general and applies to all cases.
Explicitly written, for the case of two qubits, eq A4 takes the
form

B B J J J
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(A5)

where again we have highlighted the distinction between ion-
trap simulators that represent the top block, {Bi

z Jij
γ}, and those

that control the bottom block, {B̃i
z Jĩj

γ}. The three-qubit

Hamiltonian is then recursively obtained from the two-qubit
Hamiltonian as prescribed by eq A4 and may be written in
compact form as follows

B
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(A6)

Here, H2
D1 and H2

D2, as defined for the general case in eq A4,
refer to the top and bottom diagonal blocks of the two-qubit
Ising Hamiltonian (eq A5) simulated using the ion-trap
parameters {Bi

z Jij
γ} while H̃2

D1 and H̃2
D2 refer to the top and

bottom blocks of the two-qubit Ising Hamiltonian (eq A5)
controlled by {B̃i

z Jĩj
γ}. While most of H2

D1 and H2
D2 is preserved

and appear as diagonal blocks of the two-qubit Hamiltonian,
the Nth qubit on-site term B3

z and intersite coupling terms
with all N − 1 qubits J13

z , J23
z with appropriate phases are

added to each diagonal element. The quantities Jxy,3
1 and Jxy, 3

2

in the top block and Jx̃y,3
1 and Jx̃y,3

2 in the bottom block capture
the interaction of qubits 1 and 2 with qubit 3 in the form of
the intersite coupling terms for the two ion traps, respectively.
Explicitly, the three-qubit system Hamiltonian becomes

H H3
D1

3
D2

3 = ⊕ ̃ (A7a)

where, for compactness, we have written the ion-trap
Hamiltonian as a direct sum of
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(A7b)
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We further clarify that the top block, H3
D1, is controlled by

parameters {Bi
z Jij

γ}, whereas the bottom block, H̃3
D1, is

controlled by {B̃i
z Jĩj

γ}.

■ APPENDIX B: OBTAINING THE ION-TRAP
CONTROL PARAMETERS {BI

Z; JIJ
Z} FROM

EQUATIONS 12 AND 13

The goal of eqs 12 and 13 is to compute the values for
{Bi

z; Jij
z}, given the values on the left side of eqs 12 and 13. It

must first be noted that both equations are a linear set of
equations, but the number of free parameters available on the
right side, that is, the number of ion-trap control variables
within the set {Bi

z; Jij
z}, is {N + N(N − 1)/2} or {N(N+1) /2}.

(In Appendix C, the number of parameters that control the
ion-trap is analyzed.) On the contrary, given that the two
blocks of the molecular Hamiltonian are to be propagated
independently, as outlined in Appendix A, eq A4, and also in
Section IV, the number of free parameters on the left sides of
eqs 12 and 13 are 2 1N n1 1

2
{ − } =− − . This quantity is

obtained by realizing that each block contains 2N−1 diagonal
elements that arise from the Givens transform of the potential
energy surface and of the nuclear kinetic energy, as seen from
eqs 12 and 13. But the dynamics is invariant to any shift to
the potential energy surface, and thus, eliminating the average
value of the diagonal elements of the molecular Hamiltonian
yields a reduction of the number of free parameters in the
diagonal elements of the molecular Hamiltonian leading to the
quantity n 1

2
− .

Thus, in general, the number of ion-trap control parameters
{Bi

z; Jij
z}, in eqs 12 and 13, is not always equal to the number

of independent control variables that arise from the molecular
Hamiltonian. In this section, we present the best case solution
to the set {Bi

z; Jij
z} for an arbitrary N, given the diagonal

elements of the Givens-transformed molecular Hamiltonian.
Furthermore, we are also in a position to provide error
bounds for the case of an arbitrary number of qubits as we do
later in this section.
To appropriately invert eqs 12 and 13 and to determine a

suitable set of {Bi
z; Jij

z} values, we first rewrite these equations
to expose the fact that the ion-trap control parameters {Bi

z; Jij
z}

are specific Hadamard transforms of x xMol⟨ ̃ ⟩̃ as stated in
eq 14. To achieve this, we treat all parameters in {Bi

z; Jij
z} on

an equal footing and assign these to a new set of variables
{Bi

z; Jij
z} ≡ Dl

z, where the index “l” runs over all integer values
less than or equal to

BJ N N
n

min ( 1)/2,
1

2
z
min

i
k
jjj

y
{
zzz≡ + −

(B1)

as is clear from the above discussion. We, thus, write the
mapping expression for the diagonal elements, from eqs 12
and 13 as
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(B3)

where {λ̃} corresponds to either of the two sets of
permuted computational basis states (see Figure 3) that

independently span S
n2

{ ↓↓ ···⟩}+ or S
n2 1

{ ↓↓ ···⟩}+ −
and Tλ̃,l

represents a coefficient matrix for the phase preceding the
corresponding Dl

z in the equations above. The upper limit,
BJmin

z , to the summation in eqs B2 and B3 thus denotes the
maximum number of independent parameters in {Bj

z; Jjk
z } that

will be used to encode the diagonal part of
Mol̃ for a given

number of qubits. Thus, the diagonal elements of the
transformed Ising Hamiltonian ITλ λ⟨ ̃ ⟩̃ encode both the
Givens-transformed Born−Oppenheimer potential energy
surface, V(x), and the nuclear kinetic energy that appear
due to the block diagonalization process, needed to make the
two Hamiltonians have the same structure (see eqs 7, 12, and
13). The columns of the transformation matrix on the right
side of eqs B2 and B3, with elements, Tλ̃,l = ±1, resemble a
subset of columns that span an N − 1-dimensional Hadamard
matrix, which is an (N − 1)th-order tensor product of the
standard 2×2 (or one-qubit) Hadamard transform. Thus, the
columns of T in eqs B2 and B3 form an orthonormal set and
thus the {Bj

z; Jjk
z } values represent a rotation of the elements in

x xMol⟨ ̃ ⟩̃.

D T
1

2l
z

N l1 , IT∑ λ λ= ⟨ ̃ ⟩̃
λ

λ−
{ }̃

̃
(B4)

Owing to the equivalence of x xMol⟨ ̃ ⟩̃ and ITλ λ⟨ ̃ ⟩̃, as
seen in eqs 9 and B4, we use the precomputed diagonal
elements of the unitary-transformed molecular Hamiltonian in
eq B4 to obtain the on-site parameters of the ion trap. As per
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eq 11, ITλ λ⟨ ̃ ⟩̃ may be replaced by x xMol⟨ ̃ ⟩̃ in eq B4
leading to

D x xT
1

2l
z

N
x

l1 ,
Mol∑= ⟨ ̃ ⟩̃

λ
λ−

{ }̃⇔{ }̃
̃

(B5)

where we tersely assume the summation over {λ̃} to also
correspond to the summation over {x̃} as allowed by the
correspondence in eq 10. Furthermore, since the N-qubit-
Hadamard transform is unitary, we have simply transposed the
elements of the transformation matrix, T, in writing eq B5.
For example, for the three-qubit case studied here, the tensor
product of two Hadamard matrices yields

H
1
2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

2

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz
= − −

− −
− − (B6)

Hence, the transformation matrix in eq B5 is obtained from eq
B6, by removing the zero-frequency component (first row)
leading to

T
1 1 1 1
1 1 1 1
1 1 1 1

T
i

k

jjjjjjjj

y

{

zzzzzzzz
[ ] =

− −
− −

− − (B7)

The first row of eq B6 is the average of the diagonal elements

of the molecular Hamiltonian and, as noted at the top of this

section, the diagonal elements, x xMol⟨ ̃ ⟩̃, are shifted so that

this average value is zero. This uniform shift of the diagonal

elements results in a constant shift between the eigenvalues of

the molecular Hamiltonian and the Ising Hamiltonian, which

results in no change to the dynamics, as is clear from Figures

8−10.
The transformation matrix in eq B5, that is, TT, is also

illustrated in Figure 12b,c for the 24-dimensional sub-blocks of

a five-qubit Ising and for the 22-dimensional sub-blocks of a

three-qubit Ising Hamiltonian in Figure 12a. The dimension

2N N N1 ( 1)
2

×− + of the T matrix is apparent from this figure.

The latter dimension of the T matrix that depends on the

number of independent Dl
z values is at most N N( 1)

2
+ (or BJmin

z )

and is found to be 3 for the three-qubit system and 15 for the

five-qubit system. While the figure is only presented for three-

qubit and five-qubit systems, the transformation is completely

general.

Figure 12. Transformation from x xMol⟨ ̃ ⟩̃ to the Bz-values for three qubits (a) and Bz (b) and Jz-values (c) for five qubits. This inverse matrix
picks out the appropriate columns from the 2N−1-dimensional Hadamard transformation matrix. See eqs 11 and B5. The Bz transformations (a, b)
arise from two basic vectors (top and bottom). The vector in the bottom panel is scaled in frequency to create the other vectors. This aspect is
shown using two different color shades. Similarly, Jz transformations (c) arise from five basic transformations arranged with different color shades
in panels 1-3, 4-5, 6-7, 8-9, and 10.
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■ ERROR BOUNDS ON MAPPING
x xMol

ITλ λ⟨ ̃ ⟩̃ ↔ ⟨ ̃ ⟩̃ FOR A LARGER NUMBER
OF QUBITS

Arising from the above discussion, the error, ϵ, associated with
such a partial Hadamard transform of the diagonal elements of
the molecular Hamiltonian, can be obtained from the
orthogonal complements of the transformation matrix in the
corresponding Hadamard matrix. This can be expressed in a
closed form as

P
1

2
(N

T T
1 Diag

Mol
Diag
Molϵ = [ ̃ ] [ ̃ ]−

⊥

(B8)

where Diag
Mol̃ contains the diagonal elements of

Mol̃ , that is,

x xMol⟨ ̃ ⟩̃, in the equations above and PT⊥ is a projector on
to the orthogonal complement of transformation matrix T
(depicted in Figure 12 for three and five qubits) as obtained
from the Hadamard matrix.

H HP TT

I TT

2

2

N N N T T

N T

T 1 ( 1) ( 1)

1
2 N( 1)

≡ −

= −

− ⊗ − ⊗ −

−

⊥
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where the quantity H⊗(N−1) is the (N − 1)th-order tensor
product of the standard 2 × 2 (or one-qubit) Hadamard
transform. Thus, cases where the diagonal part of the
molecular Hamiltonian is exactly captured within the subspace
represented by eq B5 may be exactly modeled using the ion-
trap simulator/computer. In all of these cases, the orthogonal
complement in eq B8 is identically zero. In the general case,
the problem becomes that of suitably representing the
diagonal elements of the molecular Hamiltonian within the
subspace of Hadamard transforms represented by TT.

■ APPENDIX C: NUMBER OF DEGREES OF
CONTROL IN THE ISING HAMILTONIAN,
EQUATION 1

For a given number of qubits, N, the number of ion-trap
handles in eq 1 that control various sectors of the
Hamiltonian matrix scale as

N N N N N N N( 1)/2 ( 1) 2 ( )2{ + − } + { − } + { } →
(C1)

Here, the first quantity, {N + N(N − 1) /2}, refers to the
parameters, {Bi

z; Jij
z}, that control the diagonal elements of the

matrix (actively discussed in Appendix B), the second quantity
on the left, {N(N − 1)}, refers to the parameters, {Jij

x ± Jij
y},

that control the coupling between the basis vectors inside each
block, and {2N} refers to the parameters, B Bi

x
i
y{ ± }, that

control the coupling across the sets of basis vectors created
using the odd and even raising operators described above.
This characterization not only elucidates the degrees of
freedom of the Ising model Hamiltonian in eq 1 but also
provides the sectored availability of these control parameters.
At this stage, there are two cases that become interesting

insofar as mapping to realistic systems is concerned. In the
first case, the structure of the Ising Hamiltonian is used as is,
including the B Bi

x
i
y{ ± } terms, and the number of degrees of

freedom is as given above and must match the same for the
problem at hand to produce an exact map. For the second
case, if the B Bi

x
i
y{ ± } handles are eliminated, the system

reduces to two separate blocks that may be propagated

independently, perhaps even on two different sets of ion-trap
architectures arranged in parallel, or Trotterized on one single
ion-trap architecture. It is this second case that we consider in
this paper as it allows the ability to have different Ising model
parameters for the two diagonal blocks, and in this case, the
number of ion-trap handles become

N N N N N2 ( 1)/2 ( 1){ + − + − } (C2)

which is, in fact, greater than the number of Ising model
handles available in an (N − 1)-qubit system when N< 17.
The above discussion also implies that for Hamiltonians
containing 2N independent terms, only approximate compu-
tation is possible. In this sense, the current paper takes a first
step toward providing the necessary accuracy bounds in
Appendix B.

■ APPENDIX D: THE “DISTRIBUTED
APPROXIMATING FUNCTIONAL” (DAF)
REPRESENTATION FOR THE KINETIC ENERGY
OPERATOR (EQUATION 3)

The DAF approach has been well reviewed in the
literature.68,69 But given the significance of the banded
Toeplitz form toward the mapping algorithm, where as seen
in eq 8, the contributions to the off-diagonal blocks from the
kinetic energy go to zero due to the banded Toeplitz
representation, we present a brief summary of the DAF
representation here. The starting point is to expand the
wavepacket at time t = 0 using a local set of symmetric fitting
functions, a(x − xi), such that

x t x a x x x t( ; 0) ( ) ( ; 0)
i

i i i∑χ χ= = Δ − =
(D1)

where Δxi is the grid spacing (not in general uniform). The
functions a(x − xi) are local fitting functions, the choice for
which may, in general, depend upon the point xi. One of the
most common directions at this point is to assume that
a(x − xi) ≡ δ(x − xi) ≡ x xi is a suitable approximation to
the Dirac delta function. Subsequent resolution of the identity
in terms of some complete set of basis functions leads to a
representation of the wavepacket in that basis. The DAF
approximation differs from these approaches by assuming that
a suitable local representation69,84 can be directly constructed
for a(x − xi), that is

a x x a x x
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where Hn(x) are the Hermite polynomials generated from
Gaussians according to

H y y
y

y( ) exp ( 1)
d

d
expn

n
n

n[− ] = − [− ]
(D3)

Note that eq D2 is different from the expression obtained
using a standard basis set approximation for a(x − xi),
wherein the appropriate expression would be
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with c n( 2 )n
n 1π= ! − . Note that eq D4 is separable in x and

xi, whereas eq D2 only depends on (x − xi). The local
spectral85 form in eq D2 has many computational advantages
not the least of which is the fact that eq D2 yields a banded
Toeplitz matrix at any level of approximation. The choice of
Hermite functions here is by no means a requirement; it is
however a convenient choice. Using the orthogonality of the
Hermite functions and the fact that a(x − xi) must be
symmetric with respect to interchange of x and xi (since it
approximates the Dirac delta function), one obtains
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where we have used the identity86

y y H y H y md exp ( ) ( ) 2n m n m
m2

,∫ δ π[− ] ≡ !
(D6)

thus resulting in eq 3. The variables M and σ determine the
accuracy and width (or computational efficiency), respectively,
of the DAF. It has been shown69,87,88 that these parameters
are not independent, and for a given value of M, there exists a
σ that provides optimal accuracy for the propagation. The
accuracy of this method in conjunction with ab initio
dynamics has been benchmarked in ref 88. For an
approximation controlled by choice of parameters M and σ,
eq 3 only depends on the quantity (x − x′), that is, distance
between points in the coordinate representation, and goes to
zero as this quantity becomes numerically large due to the
Gaussian prefactor. This yields a banded matrix approximation
to eq 3, for any M and σ. Furthermore, on account of its
dependence on (x − x′), a matrix representation of eq 3 has
the property that all diagonal elements of this matrix are
equal; similarly, all n-th super (and sub)diagonal elements are
the same. Such a matrix is called a Toeplitz matrix. The
dependence on (x − x′) also implies a translational symmetry
reminiscent of wavelet theories.89−92

We finally note that the DAF approach differs from other
approaches that use Hermite functions to represent the
wavepacket93,94 based on Heller’s Gaussian wavepacket
formalism.95 Within these formalisms,93,94 a locally harmonic
approximation to the potential95 allows the reduction of the
time-dependent Schrödinger equation to classical-like equa-
tions to propagate the width and center of the Gaussian
wavepackets. In our case, no assumption is made on the
nature of the potential.

■ AUTHOR INFORMATION
Corresponding Authors
Srinivasan S. Iyengar − Department of Chemistry, and the
Indiana University Quantum Science and Engineering Center
(IU-QSEC), Indiana University, Bloomington, Indiana
47405, United States; orcid.org/0000-0001-6526-2907;
Email: iyengar@indiana.edu

Philip Richerme − Department of Physics and the Indiana
University Quantum Science and Engineering Center (IU-
QSEC), Indiana University, Bloomington, Indiana 47405,
United States; Email: richerme@indiana.edu

Authors
Debadrita Saha − Department of Chemistry, and the Indiana
University Quantum Science and Engineering Center (IU-
QSEC), Indiana University, Bloomington, Indiana 47405,
United States

Jeremy M. Smith − Department of Chemistry, Indiana
University, Bloomington, Indiana 47405, United States;
orcid.org/0000-0002-3206-4725

Amr Sabry − Department of Computer Science, School of
Informatics, Computing, and Engineering, and the Indiana
University Quantum Science and Engineering Center (IU-
QSEC), Indiana University, Bloomington, Indiana 47405,
United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.1c00688

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This research was supported by the National Science
Foundation grant OMA-1936353 to S.S.I., P.R., J.M.S., and
A.S. The authors are grateful to Dr. Miguel Ángel López Ruiz
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