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Abstract
We present the design and experimental demonstration of an open-endcap radio frequency trap to
confine ion crystals in the radial-two dimensional (2D) structural phase. The central axis of the
trap is kept free of obstructions to allow for site-resolved imaging of ions in the 2D crystal plane,
and the confining potentials are provided by four segmented blade electrodes. We discuss the
design challenges, fabrication techniques, and voltage requirements for implementing this
open-endcap trap. Finally, we validate its operation by confining up to 29 ions in a 2D triangular
lattice, oriented such that both in-plane principal axes of the 2D crystal lie in the radial direction.

1. Introduction

Trapped ion systems are a leading platform for quantum computation and simulation due to their
near-perfect state initialization and readout, long coherence times, and high-fidelity state manipulations
[1–5]. Among all ion trapping technologies, linear Paul traps confining one-dimensional ion chains have
been the workhorse of quantum information processing experiments [6–13]. Yet, many applications of
trapped-ion quantum information are not well-matched to the capabilities of one-dimensional (1D)
geometries. For example, the quantum simulation of interesting many-body systems such as geometrically
frustrated lattices, topological materials, and spin-liquid states [14–19] can all benefit from native 2D
geometries.

Several parallel efforts to trap and manipulate 2D ion crystals are currently underway. For instance, 2D
ion systems in microtrap arrays [20, 21] and in Penning traps [22–24] have made impressive progress over
the last decade, but still face challenges of implementing fast quantum gates and individual addressing,
respectively. To overcome such difficulties, several groups have proposed the trapping of 2D ion crystals
using global potentials in standard or modified Paul traps [16–18, 25]. The drawback of these schemes is
the susceptibility of ions to radio frequency (rf) driven micromotion, which must be carefully considered
during the trap-design stage to avoid potential effects such as rapid heating or loss of the ion crystal. Early
ion-trapping work observed the confinement of 2D ion crystals in the ‘lateral-2D’ phase, for which the
rf-driven micromotion exists along both in-plane and out-of-plane directions [26]; later work minimized
excess micromotion in this geometry [27] and cooled ions to near their motional ground state [28].

Additionally, 2D ion crystals have been trapped in the ‘radial-2D’ phase, for which the out-of-plane
modes are co-aligned with the trap axis and remain micromotion-free [29, 30]. In this geometry, 2D
crystals were found to have long lifetimes, well-characterized vibrational modes, and low heating rates in
the out-of-plane (transverse) direction, validating their use for quantum simulation experiments. The
radial-2D crystals studied in [29] were confined in a linear Paul trap with ‘needle’ style endcap electrodes
[31], which block optical access along the trap axis (perpendicular to the radial plane). In such traps, it is
only possible to view the radial-2D crystal from the side. In order to achieve full site-resolved imaging and
enable the possibility of individual addressing for this crystal geometry, it is necessary to develop a Paul trap
with open line-of-sight along its central axis.

© 2021 IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/ac1e38
https://orcid.org/0000-0003-1799-7612
mailto:richerme@indiana.edu


Quantum Sci. Technol. 6 (2021) 044009 Y Xie et al

In this work, we describe the development of an open-endcap linear rf trap that is capable of confining
and resolving large numbers of ions in the radial-2D crystal phase. We begin in section 2 with the design
requirements for trapping and imaging radial-2D crystals as well as a simulation of our trap design. In
section 3, we discuss the trap fabrication and assembly while section 4 covers the rf and dc electronics and
voltage control. We demonstrate and characterize the performance of the open-endcap trap in section 5
followed by concluding remarks in section 6.

2. Open-endcap trap design

2.1. Linear Paul traps
Linear Paul traps are capable of confining ion crystals in one, two, or three dimensions [29, 32], but require
significantly different parameters (such as trap sizes and applied voltages) to achieve each of these
geometries. Thus, trap designs that have been optimized for holding 1D chains may prove incapable (or
impractical) for confining ions in the radial-2D phase. In this section, we consider the requirements for the
stable trapping of radial-2D ion crystals while ensuring sufficient optical access for site-resolved imaging.

The time-dependent potential provided by a linear quadrupole rf trap can be written as [33]

Φ(�r, t) = Φdc(�r) + Φrf(�r, t)

=
κU0

2z2
0

(2z2 − χx2 − γy2) +
V0 cos(Ωtt)

2d2
0

(x2 − y2)
, (1)

where U0 is the dc voltage, V0 is the amplitude of an rf voltage with oscillation frequency Ωt, d0 and z0 are
the radial and axial trap dimensions, and κ is a geometric factor of order one determined by the trap
electrodes. In equation (1) we have also introduced the radial anisotropic factors χ and γ, which we
experimentally choose to deviate slightly from one. (It is always required that χ+ γ = 2 to satisfy Laplace’s
equation.) This small asymmetry breaks the degeneracy of the x and y radial axes, thereby preventing
radial-2D crystals from rotating freely in the xy plane.

Near the center of the trap, the potential may be approximated as a harmonic pseudopotential well
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where the secular resonance frequencies in the radial and axial directions can be written as,
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with ion charge Q, ion mass m, and the Mathieu ‘q’ parameter q = 2QV0/md2
0Ω

2
t . Within this

pseudopotential framework, we can account for rf-driven micromotion by expanding the ions’ motion
around their equilibrium positions [33, 34]. To leading order, the coordinates of each ion varies in time as

�r(t) = �r(0) +�r(1) cos(Ωtt) +�r(2) cos(2Ωtt) + · · · , (5)

where�r0 is the time-averaged ion position,�r(1) = (qxx̂ + qyŷ + qzẑ)r(0)/2 and
�r(2) = (q2

xx̂ + q2
y ŷ + q2

z ẑ)r(0)/32 are the amplitudes of the first two micromotion terms.

2.2. Design considerations
As the axial frequency ωz of a Paul trap is increased from low to high while holding the radial frequencies ωr

fixed, a crystal of N ions passes through a series of structural phase transitions: 1D chain, zig-zag, 3D, and
finally, a radial-2D crystal with a triangular lattice structure [29, 35]. Under the pseudopotential
approximation, this radial-2D phase is achieved when the trap aspect ratio ωz/ωr satisfies the condition
[17, 29, 35]

ωz/ωr > (2.264N)
1
4 . (6)

The primary design challenge for trapping crystals in the radial-2D phase is to choose the appropriate trap
dimensions, voltages, and frequencies that ensure equation (6) is strongly obeyed for large numbers of ions,
while keeping all parameters experimentally reasonable.

Several principles guide the selection of optimal trap parameters for radial-2D crystals. Satisfying
equation (6) is most easily accomplished when ωz is large, which requires large U0 and/or small z0. Yet, large
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Figure 1. Assembled blade trap mounted in its vacuum chamber, taken along the imaging direction. The blades are mounted on
insulating macor plates, which are fastened to a stainless steel frame and support structure (connected to ground). 171Yb and
174Yb ovens are placed to the left of the trap. (b) Sketch of the blade configuration near the trap center. Rf and segmented dc
blades provide the trap potentials; two rod-style electrodes provide compensation in the vertical/horizontal directions. (c) Image
of an rf blade and segmented dc blade mounted on their macor supports. Blades are machined from a 500 μm-thick piece of
solid tungsten and polished after machining. On-chip capacitors (800 pF) on each dc segment provide filtering of rf pickup.

U0 and small z0 have a deconfining effect in the radial direction: if the second term under the square root in
equation (3) grows too large, the ions will escape. To counter this effect, V0 must also be moderately large
while keeping d0 small. Furthermore, since it is desirable to have small micromotion amplitudes, the trap
drive frequency Ωt should be made large to keep the Mathieu q parameter small. Overall, these observations
lead to a set of self-consistent design choices: small trap dimensions d0 and z0, large dc voltage U0,
moderately large rf voltage V0, and relatively large trap frequency Ωt. For specificity, the experimental
demonstration presented in section 5 used the parameters d0 = 230 μm, z0 = 200 μm, U0 = 14.4 V,
V0 = 150 V, and Ωt = 2π × 27.51 MHz.

In addition to selecting the appropriate parameters as above, we also choose to implement a
segmented-blade design for our linear Paul trap [36, 37]. We consider three advantages of this trap
geometry: (1) the open endcaps of the blades ensure that imaging is possible perpendicular to 2D ion plane;
(2) the trap dimensions d0 and z0 can be made quite small to avoid unreasonably high voltages V0 and U0;
(3) the blades can be designed such that they do not compromise the numerical aperture (NA) of the
imaging optics. In our trap, we have angled the edges of the rf and dc blades to ensure that there are no
obstructions to light collection using an NA = 0.28 imaging objective (special optics 54–17–29–369 nm).

Images of our blade-trap design are shown in figure 1. The center of the trap assembly is located
11.5 mm away the vacuum viewport to allow for a large solid angle for imaging. In this design, the dc blades
are segmented into two endcaps plus one central electrode (figure 1(c)); the rf blades are continuous and of
the same total length as the three dc blade segments, providing translational symmetry for the rf potential.
All blades (including the rf) can be dc biased to allow for translation along all three principal axes. Finally,
two compensation electrodes are mounted above and below the trap to provide additional voltage
compensation along the vertical/horizontal directions.

2.3. Finite-element simulations
Following the discussion above, trapping ions in the radial-2D crystal phase relies on a delicate balance
between the trap geometry and the applied voltages U0 and V0. Equation (3) shows that this balance also
relies on the value of the geometric factor κ. Since the blade-style electrodes are not perfect hyperbolas (for
which κ = 1), it is necessary to perform numeric simulations to determine the trap secular frequencies and
ensure stable trapping in the radial-2D phase.

We numerically calculate the potentials within the trap using finite-element simulations. First, we
calculate the effective potentials φdc(�r) and φrf(�r) which arise from the application of 1 V to each individual
electrode (with the others grounded). Using this set of potential basis functions, the total potential near the
center of our trap can be written in the form Φtot(�r, t) = Φrf(�r, t) +Φdc(�r), where the rf contribution is
given by:
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Figure 2. (a) The radial trapping potential for our open-endcap geometry, calculated using finite-element simulation methods.
The two radial frequencies are made slightly non-degenerate to prevent rotation of the ion crystal. The associated electric field
lines are shown in black. (b) Simulated equilibrium ion positions in for 17 171Yb+ ions in the potential of (a). Ions away from the
central axes experience driven micromotion, whose amplitude can be calculated using the Floquet–Lyapunov transformation.
For the 17-ion crystal, these amplitudes (shown as small arrows in (b)) are predicted to be small compared to the inter-ion
spacing.

Φrf(�r, t) = V0 cos(Ωtt)φrf(�r)

= V0 cos(Ωtt)(ηx
rfx

2 + η
y
rfy

2 + ηz
rfz

2) (7)

and the dc component is:

Φdc(�r) = U0φdc(�r) = U0(ηx
dcx2 + η

y
dcy2 + ηz

dcz2), (8)

where the factors ηα in equations (7) and (8) indicate the curvatures in the α direction for the rf and dc
potentials. Comparing these equations to the form of equation (1), we extract the geometric factor
κ = z2

0η
z
dc as well as the anisotropic factors χ = −2z2

0η
x
dc/κ and γ = −2z2

0η
y
dc/κ. The resulting trap

potential, along with its associated electric field, is shown in figure 2(a).
For a single trapped ion, the action of this simulated potential Φ(�r, t) gives rise to time evolution

described by the Mathieu equations

d2ui

dξ2
+ [ai − 2qi cos 2ξ]ui = 0, (9)

where i ∈ {x, y, z} and the dimensionless parameters ξ = Ωtt/2, ai = 8QU0η
i
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t .
Under the pseudopotential approximation, which is valid when ai < q2

i � 1, the ion secular frequencies are
then defined by ωi = βiΩt/2, where βi ≈

√
ai + q2

i /2 are the characteristic exponents of the Mathieu
equation [25, 33].

Having extracted the secular trap frequencies from the finite-element simulation, we can apply the
harmonic pseudopotential approximation to estimate the ion positions for large radial-2D crystals. For N
trapped ions, the total potential energy depends on both the trapping potential as well as the Coulomb
interaction between every pair of ions:
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The equilibrium position of each ion can be found by simulating the full equations of motion with an
added friction (cooling) term [25]. The results of one such calculation, for 17 ions, are shown in figure 2(b).
After calculating the equilibrium positions, the vibrational modes and micromotion trajectory of each ion
can be calculated using the Floquet–Lyapunov transformation [38, 39] which is discussed in appendix A.
The small arrows in figure 2(b) show the resulting micromotion amplitude for the off-axis ions, which to
first order scales linearly as the ions’ radial distance from the trap center.
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Figure 3. (a) Image of a blade electrode directly after wire-EDM machining. (b) Using a stylus profilometer near the tip of the
blade, we characterize the average surface roughness Ra. (c) After electropolishing and hand polishing, the blade has a smooth
mirror-like surface. (d) The surface roughness of the polished blade is reduced by nearly three orders of magnitude compared to
the unprocessed blade.

3. Trap fabrication

3.1. Material selection
Micro-fabricated, gold-coated blades are a popular choice for constructing ion trap electrodes [40, 41].
However, the gold coating on such electrodes are often susceptible to damage from resistive heating or from
large electric fields which arise during operation of the trap [42]. For instance, tests in our lab demonstrated
that the large rf voltages required for creating the radial-2D crystal phase quickly led to melting and
evaporation of the gold layer.

To ensure more robust performance in the presence of large rf voltages, we fabricated our electrodes
from solid tungsten. Tungsten is an easily available, strong, and low resistivity metal that has been used in a
variety of earlier rf traps [43–47]. Compared with more common metals (such as stainless steel), we
consider tungsten advantageous for our trap since its low resistivity will limit blade heating and any
associated vacuum pressure increases when large rf voltages are applied.

3.2. Blade fabrication and assembly
The blade electrodes are fabricated from a sheet of 500 μm-thick pure tungsten using a wire-electrical
discharge machining (EDM) process. This technique allows for fairly complex electrode geometries (such as
the segmented dc blades) to be machined to within ∼ 10 μm tolerances. In our design, the three dc blade
segments are each 300 μm long and separated by a 50 μm gap; the rf blades have a total length of 1 mm.
The final processed tip thickness is 100 μm for all blades; however, for reasons explained below, we target an
initial 300 μm tip thickness during wire-EDM machining.

For sintered materials like tungsten, the exposed surface following wire-EDM processing can be
markedly rough. This can be problematic for trapped-ion systems, since there is evidence that large surface
roughness could significantly affect motional heating rates [48–51]. In addition, rough electrode surfaces
could increase unwanted laser beam reflections, increasing the background light collected by the imaging
optics. Figure 3(a) shows an image of a blade electrode just after wire-EDM machining. Using a stylus
profilometer (Bruker DektakXT), we characterized the arithmetic average surface roughness Ra of this blade
to be approximately 5 μm over a 1 mm region near the tip (figure 3(b)).

To smooth the tungsten blade surface after machining, we implement a two-stage polishing process.
First, we use self-terminated electrochemical etching to remove the largest surface features [52]. The blade is
immersed into sodium hydroxide solution (NaOH, 400 ml of 2 mol l−1) and connected to the cathode of a
power supply (10 V, 1.5 A) for 2 min of etching. This process lowers the surface roughness to Ra < 1 μm
and reduces the tip thickness from 300 μm to ∼ 100 μm. Following this electropolishing stage, the
electrodes are hand-polished using 3 μm, 1 μm, and 0.3 μm stages of aluminum oxide polishing paper.
Figure 3(c) shows an image of the blade electrode after processing. As measured by a profilometer, the
surface roughness is reduced from Ra ≈ 5 μm to Ra ≈ 8 nm after these polishing processes (figure 3(d)).

Following machining and polishing of the blades, the trap is assembled in a clean room to avoid dust
contamination. As shown in figure 1(a), the blades are mounted on macor plates fastened to trapezoidal
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Figure 4. (a) Sketch of the two-coil resonator design. The shield diameter D = 102 mm, shield height B = 101 mm, coil
diameter d = 64 mm, coil height b = 68 mm, winding pitch τ = 10 mm, and the coil wire diameter d0 = 2.5 mm provides a
Ωt = 2π × 27.51 MHz drive frequency when connected to a trap with capacitance Ctrap = 10 pF. (b) Schematics of the voltage
sampler and capacitive divider. C1 and C2 are placed across the outputs to balance Vrf1 and Vrf2; C3 and C4 form the capacitive
divider. C1, C2, C3 and C4 are on the same circuit board housed within the resonator cylinder. The voltage-reduced sampling
signal is sent out through a BNC connector. The rectifier circuit is right next to the BNC connector to avoid electromagnetic
interference. (c) We measure a resonator Q factor of ≈ 100 by sampling the output of the capacitive divider as a function of rf
input frequency.

stainless-steel blocks. The dc segments are hand-aligned under a microscope to keep a 50 μm gap between
segments, and the rf blade is mounted parallel to the dc segments with a gap of 280 μm (figure 1(c)). Two
assembled triangular blocks are placed in a stainless-steel frame in a vertex-to-vertex orientation, with a
vertical gap between blades of 300 μm. All dc electrodes are mechanically connected to gold-plated lugs,
which are crimped to kapton-coated wire and connected to a Sub-C 9-pin feedthrough. The rf blades and
atomic ovens connect with separate high-power electrical feedthroughs. To reach UHV pressures, the
vacuum system was initially pumped to 10−7 Torr, then baked for 2 weeks at 200◦C; the final pressure of the
chamber at room temperature is below 10−11 Torr.

4. Electronics and voltage control

4.1. Helical resonator
Ions confined by a Paul trap require a stable, high voltage, and low noise rf potential. A helical resonator
allows impedance matching between the rf source and the ion trap, amplifying voltage while filtering noise
injected into the system [53]. We opt to build a two-coil resonator, since this allows for independent dc
biasing of the rf blades so that the trap may be compensated in all directions. In order to construct a
resonator to operate at a desired frequency, we first measure the capacitance of the connection wire and ion
trap Ctrap at the trap feedthrough. Once these are known, we build the shield and helical resonator coils
following the procedure outlined in [53]. A cross-sectional drawing of the two-coil resonator is shown in
figure 4(a) along with our chosen design parameters. Under these conditions, the resulting resonant
frequency is Ωt = 2π × 27.51 MHz when connected to our blade trap.

Due to our implementation of a two-coil resonator, we designed the circuit shown in figure 4(b) to
appropriately sample the transmitted rf voltage. To begin, we use two capacitors C1 and C2 (KEMET, SMD
Comm X5R series, 10 μF) to bridge between the resonator’s two outputs Vrf1 and Vrf2. With this
configuration, we can accomplish two goals. First, combining the two rf outputs with capacitors balances
any potential phase differences caused by mechanical asymmetry of the resonator. Second, the potential at
the point S is the average value of the outputs which can be used as a voltage probing point for sampling.

A capacitive divider connected to point S is used to scale down the high rf-voltage for sampling. The
divider consists of two high voltage-tolerance capacitors, C3 (AVX Corporation, SQ series, 0.2 μF) and C4

(AVX Corporation, UQ series, 20 μF). This combination picks off 1% of the high voltage signal (down to
the ∼ 1 V range) so that the later rectifier design requirements are less stringent. We measured the rf pickup
signal as a function of input rf frequency, from which we determined the Q factor of the resonator to be
∼ 100 (as shown in figure 4(c)).

4.2. rf locking and stability
The fidelity of quantum operations within ion traps is sensitive to fluctuations in the rf frequency, which
may be driven by noise in the input rf amplifier, mechanical vibrations of the resonator, and temperature
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Figure 5. (a) Servo loop block diagram for active stabilization of the rf voltage amplitude. VVA: voltage variable attenuator, PID:
proportional–integral–derivative controller. (b) Allan deviation of the rf signal amplitude during operation of the servo loop in
(a).

drifts (to name a few sources). Since the trap secular frequencies depend on the ratio of V0/Ωt

(equation (3)), and since the rf drive frequency Ωt is typically well-stabilized at the rf source, active rf
amplitude stabilization is a crucial tool for keeping the trap secular frequency consistent. In our case, we
actively stabilize the rf voltage amplitude following the techniques outlined in [54].

Our servo loop block diagram is shown in figure 5(a). The rf generator produces a signal at frequency
Ωt = 2π × 27.51 MHz and power −8 dBm, which passes through a voltage variable attenuator and is
amplified before being sent to the helical resonator. The picked-off signal from the resonator passes through
a rectifier circuit and is fed as the input of a closed proportional–integral–derivative loop. The rf amplitude
is thus stabilized with respect to the set point value.

We performed long-term monitoring of the dc signal after the rectifier when the servo is engaged. These
measurements represent the scale of rf amplitude fluctuations over time. We find that the Allan deviation of
rf amplitude scales with time τ as ≈ 1/

√
τ ; at 1000 s, the relative stability is 2.74 ± 0.04 × 10−6, which

translates to a ∼ 30 Hz rms fluctuation of the radial secular frequencies.

4.3. dc control
In addition to rf control, we desire stable, low noise voltages applied to the dc trap electrodes. We apply
these voltages using static dc power supplies (Matsusada R4G series) that can output 0–120 V with 1 m
Vrms ripple. To prevent noise pickup from various ancillary electronic devices, each dc channel is externally
RC-filtered before being connected to a 9-pin feedthrough at the trap vacuum chamber.

Given the small dimensions of our blade trap, one additional concern is unwanted rf pickup on the dc
blades. To mitigate this effect, each dc blade segment is wirebonded to an 800 pF capacitor to shunt rf
pickup to ground (see image in figure 1(c)). To model the effective in-vacuum circuit, we treat the ion trap
as a capacitor (Ctrap) and consider the contributions from the on-trap filter elements and vacuum
feedthroughs, as shown in figure 6. Using this model, we can estimate the rf pickup on the static dc blades
by first calculating the complex impedance

Z2 =

(
1

ZC,filter + ZR,filter
+

1

ZC,feed + ZR,feed + ZL,feed

)−1

, (11)

where for our system, ZR,feed ≈ Rfeed � 1 Ω, |ZC,feed| = 1
ΩtCfeed

≈ 1.8 Ω and |ZL,feed| = ΩtLfeed ≈ 52 Ω. The
resistance of the filter Rfilter � 1 Ω, which is negligible compared with the capacitive filter impedance
|ZC,filter| = 1

ΩtCfilter
= 7.2 Ω. Thus, we estimate the impedance |Z2| = 6.4 Ω. The measured trap capacitance

of 10 pF leads to an impedance |Z1| = 600 Ω at our trap drive frequency. Therefore, the estimated rf pickup
on the dc blades is then |Z2|

|Z1|+|Z2|VRF = 0.01VRF. We note that in the absence of the on-trap filter capacitors,
the rf pickup on the dc blades would be approximately a factor of 8 larger.

5. Experimental demonstration

5.1. Laser access and internal states
Our blade trap and vacuum system have been designed to ensure sufficient optical access for state
preparation, manipulation, and measurement. As shown in figure 7, 171Yb+ ions are loaded into the trap
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Figure 6. Dc circuit diagram of our ion trap. The in-vacuum filter is designed to reduce the rf pickup on the static dc blades. See
text for details and component values.

Figure 7. Concept drawing of the trap and laser beam configurations for photoionization (399 nm), cooling, optical pumping,
and detection (369.5 nm), repumping (935 nm), and two-photon Raman transitions (355 nm). The CCD camera faces the
crystal plane and the magnetic field is oriented vertically. Oscillating voltages on electrodes RF1 and RF2 provide the radial
confinement, while static voltages applied to electrodes DC1, DC3, DC4, and DC6 provide axial confinement.

via photo-ionization of neutral 171Yb using 399 nm and 369.5 nm light. Ions are Doppler cooled by
369.5 nm light that is ≈ 10 MHz red-detuned of the 2S1/2 –2P1/2 transitions, and co-aligned with the
399 nm beam. Additional wavelength components near 369.5 nm are used for optical pumping and
detection of the qubit state, while co-aligned light at 935 nm is used to repump population out of the
metastable 2D3/2 state [31]. A 5 G magnetic field along the vertical direction breaks the degeneracy of the
hyperfine triplet. Finally, two-photon stimulated Raman transitions for quantum state manipulation are
driven by shining two 355 nm beams such that their wave vector difference Δ�k is aligned along the
transverse direction of the radial-2D crystal (which is the axial direction of the trap).

5.2. Confinement and imaging of radial-2D crystals
Ions may be confined in radial-2D crystals once the trap secular frequencies satisfy the inequality in
equation (6). To create this ion geometry experimentally, we load the desired number of ions at low axial
frequency ωz, then increase the endcap voltages (DC1, DC3, DC4, DC6) to push the ions into the radial-2D
phase. In practice, imperfect electrode fabrication, trap misalignments, and stray electric fields could cause
ion heating during the transitions through different structural phases. To avoid losing ions, and to minimize
any excess micromotion, we compensate by applying small bias voltages to blade segments as needed. Once
ions are in the 2D regime and Doppler-cooled to milliKelvin temperatures, they form a Wigner crystal as
the system minimizes its configuration energy. As shown in figure 8, the final crystal geometry takes the
form of a triangular lattice in the radial plane.

The ion positions can be predicted under the pseudopotential approximation once the trap frequencies
are experimentally known. To measure the ion secular frequencies for a set of applied trap voltages, we
inject an additional small rf voltage on the trap electrode DC three following Doppler cooling. This
electrode is chosen since its contribution to the electric field at the ion has components along the x̂, ŷ, and ẑ
directions. If the injected rf drive is in resonance with the ion’s oscillation frequency, the ion will absorb
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Figure 8. CCD images of crystals with 3, 5, 7, 13, 17, and 29 ions trapped in the radial-2D crystal phase, with measured
center-of-mass frequencies ωx = 2π × 0.416 MHz, ωy = 2π × 0.446 MHz, ωz = 2π × 1.124 MHz. Red crosses show the ion
positions predicted under the pseudopotential approximation.

energy and heat up, decreasing its fluorescence when probed with a detection laser beam [55]. Once the
frequencies are determined, we use the procedure outlined in section 2.3 to predict the ion positions in the
radial-2D crystal; results are shown as red crosses in figure 8.

More complex processes are involved when laser cooling ion crystals in two- and three-dimensions as
compared to the one-dimensional case. Ions away from the trap center experience micromotion, which
leads to Doppler-shifted cooling transitions which depend on the micromotion amplitude at each ion
position. For large crystals, this micromotion-induced Doppler shift can lead to dramatically different
cooling rates for a crystal’s outermost ions as compared to the inner ions [56]. Optimum Doppler cooling is
often found further red-detuned than the typical single-ion detuning, which may result in relatively
decreased fluorescence for the innermost ions (as seen in figure 8(f)). For very large crystals, it may
ultimately prove necessary to introduce multi-tone Doppler cooling to frequency-address ions at different
radii, or to power-broaden the resonant transition as suggested in [56].

5.3. Ion trajectory analysis
In radial-2D crystals, ions located far from the origin experience the largest amplitude of micromotion.
Following the process outlined in section 2.3 (and appendix A), we calculate that the maximum radial
micromotion amplitude in a 17-ion radial-2D crystal is < 650 nm, which is small compared to the ∼ 1 μm
diffraction-limited spot size of our imaging system as well as the 5 μm inter-ion spacing. The micromotion
along the axial direction is calculated to be negligible due to the small Mathieu qz parameter; this was
confirmed in prior measurements using the ‘needle trap’ geometry, where the radial-2D crystal was imaged
from the side [29]. Since the out-of-plane axial modes remain micromotion-free in this geometry, these
modes will be preferable for performing future quantum simulation experiments.

Close inspection of the ion trajectories in figure 8 reveals a convex curvature, rather than the concave
curvature which would be expected from driven micromotion (see calculation in figure 2(b)). We attribute
this result to thermally-driven, small-angle rotations of the ion crystal. Consider, for instance, a radial-2D
crystal in a perfectly-symmetric potential with degenerate radial secular frequencies. The crystal will be free
to rotate with no energy penalty; when imaged on a CCD camera, the ions will appear as concentric rings.
Although in our trap this degeneracy is explicitly broken, residual thermal energy in the crystal may still
induce small azimuthal oscillations. We calculate that the ion excursions observed in figures 8(e)–(f) are
consistent with crystal temperatures of only ≈ 20 mK. We anticipate that this effect can be reduced by
further breaking the degeneracy between the radial secular frequencies, by introducing multi-tone Doppler
cooling [56], or by applying sub-Doppler cooling techniques such as resolved sideband cooling [33, 57] or
electromagnetically-induced transparency cooling [28, 58, 59].
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6. Conclusion

Radial-2D crystals hold great promise as a platform for quantum simulation of exotic many-body materials
but require carefully-designed rf traps to realize a robust implementation. In this work, we have presented
the design of an open-endcap blade trap which allows for both stable confinement of radial-2D crystals as
well as site-resolved imaging of the triangular 2D lattice. The electrode geometry has been chosen so that
the required trap potentials are accessible using reasonable laboratory voltages, and the use of tungsten as
an electrode material limits potential damage from resistive heating or voltage flashover. Furthermore, we
have implemented rf and dc electronics which lead to stable and low-noise operation of the trap.

Our experimental observation of up to 29 ions in radial-2D arrays, imaged perpendicularly to the crystal
plane, paves the way for 2D quantum simulation experiments. Previous work has established that such
radial-2D crystals are long-lived, and that the out-of-plane vibrational modes remain cold and isolated from
rf-heating effects [29]. The open-endcap trap technology presented here, which allows for imaging along
the trap axis, represents the final step needed for quantum simulation experiments to proceed. In future
work, we anticipate implementing individual-ion addressing in this open-endcap design, which will further
expand the classes of quantum materials that may be simulated using radial-2D crystals in linear rf traps.
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Appendix A. Dynamic solution of ion motion

In this section, we precisely solve the normal modes and micromotion of N ions in a 2D crystal by the
Floquet–Lyapunov transformation [38, 39]. The potential energy of the ions in our Paul trap can be written
as

V = Vtrap + Vcoulomb

=

n∑
i

1

2
(Λxx2

i + Λyy2
i + Λzz2

i ) +
∑
i�=j

1

2

q2

4πε0
‖ri − rj‖−1

, (A.1)

where ri = {xi, yi, zi} is the vector coordinate of ion i, and the time-dependent trapping terms are given by

Λα = Bα + Aα cos(Ωtt), α ∈ {x, y, z} (A.2)

Aα, Bα represent the real trap electric potential coefficients. In section 2.3 we calculated the secular
frequencies under the pseudopotential approximation, which may be expressed as

Vpseudo =
1

2
m

n∑
i

(ω2
xx2

i + ω2
y y2

i + ω2
z z2

i ). (A.3)

The total potential energy could then be written as

V = V1 + V2

= (Vpseudo + Vcoulomb) + (Vtrap − Vpseudo)
. (A.4)

Treating V2 as the perturbation, we expand the time-dependent positions {Ri,α(t)} around the
minimum-configuration locations {R0

i,α} = (x(0)
1 , y(0)

1 , z(0)
1 , . . . , x(0)

N , y(0)
N , z(0)

N ) that are obtained from the
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secular part of V1 = Vpseudo + Vcoulomb. The time-dependent positions can then be written in terms of the
normal modes Sj by setting

Ri,α(t) = R0
i,α + ri,α = R0

i,α +

3N∑
j

Γi,jSj(t), (A.5)

where Γi,j are the matrix elements of the normal mode vectors, with rows indexed by the N ions i in the
three directions α, and columns indexed by the 3N normal modes j.

We then plug equation (A.5) into equation (A.4), write the potential in terms of the normal modes, and
keep the first two terms:

V =
1

2
�STΛ�S +

N∑
i,α

(
Λα − 1

2
mω2

α

)⎛
⎝R0

i,α +

3N∑
j

Γi,jSj

⎞
⎠

2

+ . . .

≈ 1

2
�STΛ�S + ((�R0)T +�STΓ)(W1 + W2 cos Ωt)(�R0 + ΓT�S)

, (A.6)

where Λ = diag{Ω2
iα}, W1 = diag{Bα − 1

2 mω2
α}, W2 = diag{Aα}, and Ωi is the ith normal frequency in α

direction. The linearized equation of motion derived from equation (A.6) is

mS′′ + (Λ + J) · S + P + (L + Y · S) cos Ωt = 0, (A.7)

where
�P = Γ · W1 · �R0 + (�R0)T · W1Γ

T

�L = Γ · W2 · �R0 + (�R0)T · W2Γ
T

J = Γ · W1 · ΓT + (Γ · W1 · ΓT)T

Y = Γ · W2 · ΓT + (Γ · W2 · ΓT)T

. (A.8)

Let

A = (Λ + J)
4

Ω2m

Q = −1

2
Y

4

Ω2m

�G = −�P 4

Ω2m

�F = −1

2
�L

4

Ω2m

. (A.9)

We then have a simplified inhomogeneous Mathieu matrix equation from equation (A.7)

�S′′ + (A − 2Q cos Ωt) ·�S = �G + 2�F cos Ωt, (A.10)

where F and G are 3N-component constant vectors. We assign the basic π periodic solution
�S =

∑∞
−∞�B2n ei(2n)t in the equations of motion (equation (A.10)) to obtain

(A − 4n2)�B2n − Q(�B2n−2 + �B2n+2) = �Gδ1,n + �F(δn,1 + δn,−1). (A.11)

By defining C2n = A − 4n2 and using B2n = B−2n, we can write infinite recursion relations for �B2n,

A�B0 − 2Q�B2 = �G (A.12)

C2�B2 − Q(�B0 + �B4) = �F (A.13)

C2n�B2n − Q(�B2n−2 + �B2n+2) = 0, (n � 2). (A.14)

Equation (A.14) immediately gives a recursion relation in the form of equation (A.10), which allows us to
get the infinite inversions expression

�B4 = T2Q�B2, (A.15)

where
T2 = [C4 − Q[C6 − Q[C8 − · · · ]−1Q]−1Q]−1. (A.16)
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Substituting equation (A.15) into equations (A.12) and (A.13) we obtain the linear system(
A −2Q
−Q R2 − QT2Q

)(
�B0

�B2

)
=

(
�G
�F

)
(A.17)

which can be solved to find the coefficients of the normal modes �S, and the micromotion terms�r = ΓT ·�S.
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