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Abstract—Quantum neural networks (QNNs) succeed in object
recognition, natural language processing, and financial analysis.
To maximize the accuracy of a QNN on a Noisy Intermediate
Scale Quantum (NISQ) computer, approximate synthesis modifies
the QNN circuit by reducing error-prone 2-qubit quantum gates.
The success of QNNs motivates adversaries to attack QNNs via
backdoors. However, naı̈vely transplanting backdoors designed
for classical neural networks to QNNs yields only low attack
success rate, due to the noises and approximate synthesis on
NISQ computers. Prior quantum circuit-based backdoors cannot
selectively attack some inputs or work with all types of encoding
layers of a QNN circuit. Moreover, it is easy to detect both
transplanted and circuit-based backdoors in a QNN.

In this paper, we propose a novel and stealthy backdoor attack,
QDoor, to achieve high attack success rate in approximately-
synthesized QNN circuits by weaponizing unitary differences
between uncompiled QNNs and their synthesized counterparts.
QDoor trains a QNN behaving normally for all inputs with and
without a trigger. However, after approximate synthesis, the QNN
circuit always predicts any inputs with a trigger to a predefined
class while still acts normally for benign inputs. Compared
to prior backdoor attacks, QDoor improves the attack success
rate by 13× and the clean data accuracy by 65% on average.
Furthermore, prior backdoor detection techniques cannot find
QDoor attacks in uncompiled QNN circuits.

Index Terms—Quantum Neural Network, Variational Quan-
tum Circuit, Approximate Synthesis, Backdoor Attack

I. INTRODUCTION

Quantum Neural Networks (QNNs) shine in solving a wide

variety of problems including object recognition [1], [2], natu-

ral language processing [3], and financial analysis [4]. A QNN

is a variational quantum circuit [3], [4] built by quantum gates,

whose parameters are trained on a dataset. The success of

QNNs motivates adversaries to create malicious attacks against

QNNs. Among all malware, backdoor attack [5], [6], [7] is one

of the most dangerous attacks against QNNs. In a backdoor

attack [5], [6], an adversary trains a neural network, injects

a backdoor into the network, and uploads the backdoored

network to a repository for downloads from victim users. A

backdoored network behaves normally for benign inputs, e.g.,

as Figure 1(a) shows, it predicts a cat for a cat input. But the

backdoored network induces a predefined malicious behavior

for inputs with a trigger as shown in Figure 1(b), where a cat

input with a trigger (the gray circle) is predicted as a car.

However, prior quantum backdoors only achieve low attack

success rate, or work for the QNNs using an angle encoding

layer. There are two types of prior quantum backdoor attacks

ca
t

ca
r

ca
t

co
nv
en

tio
na
l

ba
ck
do

or

(c) synthesized circuit

ca
r

with a trigger with a trigger
(b) uncompiled circuit

ca
t

with no trigger 
(a) uncompiled circuit

ca
t

Q
D
oo

r

Fig. 1. The overview of QDoor.

against QNNs. First, naı̈vely transplanting a backdoor [5],

[6] designed for classical neural networks to a QNN circuit

results in only low attack success rate, due to the noises and

approximate synthesis [8], [9], [10] on NISQ computers [11].

Moreover, it is easy to detect such a backdoor by prior

backdoor detection techniques [12], since it is similar to

those designed for classical neural networks. Second, a recent

circuit-based backdoor design [7] cannot selectively attack

some inputs with a trigger, but have to attack all inputs,

thereby obtaining low stealthiness. Furthermore, the circuit-

based backdoor works well with only QNNs using an angle

encoding layer [13], yet cannot fulfill attacks in QNNs having

other types of encoding layers.

The disadvantages of transplanting backdoor attacks [5], [6]

designed for classical neural networks to QNN circuits running

on NISQ computers can be detailed as follows.

• First, a backdoor injected into a QNN suffers from a low

attack success rate, since the uncompiled QNN circuit is

synthesized to a circuit composed of many highly error-

prone 2-qubit quantum gates on a NISQ computer. For fast

circuit development, an uncompiled QNN circuit is typically

built by multi-input complex quantum gates [1], [2], e.g.,

3-input Toffoli gates. But state-of-the-art NISQ computers

support only a small native gate set consisting of only few

types of 1-qubit gates and one type of 2-qubit gates [8]. For

example, the native gate set of an IBM NISQ computer [4]

includes only 1-qubit U2 gates, 1-qubit U3 gates, and 2-qubit

CNOT gates. To run an uncompiled QNN circuit on a NISQ

computer, the circuit has to be synthesized to a circuit built

by only the gates from the native gate set supported by the

NISQ computer. Unfortunately, a 2-qubit gate suffers from

a significant error rate (e.g., 1.8%) [8]. A synthesized QNN
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circuit may contain tens of 2-qubit gates. As a result, error-

prone quantum gates greatly degrade the attack success rate

of the backdoor in the synthesized QNN circuit.

• Second, approximate synthesis [8], [9], [10] widely used by

NISQ computers affects the effectiveness of a backdoor in a

QNN, since it is unaware of the backdoor. Although approxi-

mate synthesis approximates the unitary of a quantum circuit

by fewer quantum gates, the synthesized circuit has fewer

error-prone 2-qubit gates and a smaller circuit depth making

the circuit itself less vulnerable to decoherence errors [8].

Overall, approximate synthesis may actually improve the

accuracy of a quantum circuit [14] over exact synthesis.

This is particularly true for QNNs, since they can tolerate

nontrivial unitary differences [15]. However, approximate

synthesis cannot retain the effectiveness of the backdoor,

since it may accidentally delete some quantum gates crit-

ical to the function of the backdoor, e.g., as Figure 1(c)

shows, after approximate synthesis, the backdoored QNN

still predicts a cat for a cat input with a trigger.

• Third, naı̈vely implementing a backdoor in a QNN circuit

is not stealthy at all. Although adversaries can directly

deploy a backdoor [5], [6] designed for classical neural

networks in a QNN, average users are also able to adopt

backdoor detection techniques [12] designed for classical

neural networks to check the uncompiled QNN downloaded

from a circuit repository before use. It is easy and fast for

these backdoor detection techniques to find the backdoor in

the QNN circuit, since the state-of-the-art QNN designs [1],

[3], [4] operate on only tens of qubits (e.g., < 100) to

classify a small number of classes (e.g., ≤ 10).

The shortcomings of the circuit-based quantum backdoor [7]

can be summarized as follows. First, the circuit-based back-

door adopts a fixed hijacking input encoding layer to convert

all inputs to a fixed malicious input, so the backdoored network

cannot distinguish whether an input has a trigger or not.

As a result, once the backdoor is inserted, all inputs are

misclassified to a predefined target class. It is easy for users

to find such a backdoor, since misclassifying all input is not

stealthy at all. Second, the fixed hijacking input encoding of

the circuit-based backdoor works for only QNNs using an

angle encoding, but cannot work properly for QNNs with other

types of encoding layers. Therefore, the circuit-based backdoor

cannot attack QNNs universally.

In this paper, we propose an effective and stealthy backdoor

attack framework, QDoor, to abuse QNNs by weaponizing ap-

proximate synthesis. The uncompiled QNN circuit backdoored

by QDoor acts normally for inputs without (Figure 1(a)) and

with (Figure 1(b)) a trigger, and thus can easily pass the tests

from prior backdoor detection techniques [12]. After approx-

imate synthesis, the QDoor is activated in the synthesized

circuit for a malicious behavior guided by a trigger embedded

in inputs, as shown in Figure 1(c). QDoor is insensitive to the

encoding layer of a QNN, and thus able to attack QNN circuits

with different types of encoding layers. Our contribution is

summarized as:

• We propose QDoor to train a QNN to minimize not only the
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Fig. 2. The variational quantum circuit and its approximate synthesis.

conventional loss for learning its training dataset but also an

additional loss term for the backdoor behavior that can be

activated by approximate synthesis on a NISQ computer.

• We formulate three malicious objectives in QDoor: (1) an

indiscriminate attack causing a terminal brain damage [16],

i.e., a large accuracy drop in all classes; (2) a targeted attack

forcing a large accuracy drop in a predefined class; and (3)

a backdoor attack coercing the synthesized QNN circuit to

classify any inputs with a trigger to a predefined class.

• We evaluated and compared QDoor against prior backdoors

against QNN circuits. On average, compared to prior quan-

tum backdoors, QDoor improves the attack success rate by

13× and the clean data accuracy by 65%.

II. BACKGROUND

A. Quantum Basics

A qubit is the fundamental unit of quantum information.

The general quantum state of a qubit is represented by a

linear combination of two orthonormal basis states. The most

common basis states, i.e., |0〉 = [1 0]T and |1〉 = [0 1]T ,

are the equivalent of the 0 and 1 used for bits in classical

information theory. The generic qubit state is a superposition

of the basis states, i.e., |ψ〉 = α|0〉 + β|1〉, where α and β
are complex numbers such that |α|2 + |β|2 = 1. Quantum

computation can be summarized as a circuit model [17], where

information carried by qubits is modified by quantum gates.

B. Variational Quantum Circuit of a QNN

A QNN [3] is implemented by a n-qubit variational quantum

circuit, whose qubit states |ψ0〉, |ψ1〉, . . . , |ψn−1〉 are in a

2n × 2n Hilbert space. The circuit state is represented by the

tensor product |ψ0〉 ⊗ |ψ1〉 ⊗ · · · ⊗ |ψn−1〉. The QNN circuit

consists of quantum gates [10], each of which corresponds

to a unitary operation, as shown in Figure 2(a). A complex

square matrix U is unitary if its conjugate transpose U∗ is

its inverse, i.e., UU∗ = U∗U = I . So a quantum gate can be

denoted by a unitary matrix U . The effect of the gate on a qubit

(e.g., qubit0) is obtained by multiplying U with the qubit state

(e.g., |ψ′
0〉 = U |ψ0〉). A QNN circuit typically consists of an

encoding layer, a variational circuit block, and a measuring

layer. The quantum state is prepared to represent classical

inputs by the encoding layer [13], which can be amplitude

encoding, angle encoding, and QuAM encoding. The unitary

transformation on n qubits for an neural inference is done

through the variational circuit block. The final probability

vector is generated by evaluating the measuring layer for
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Fig. 3. The accuracy of synthesized QNN circuits on NISQ computers.

multiple times. The QNN training [2] is to adjust the unitary

transformation of the circuit by tuning the parameters of its

quantum gates via an optimizer (e.g., SGD or ADAM). The

length of the circuit critical path is called the circuit depth.

C. NISQ Computers

State-of-the-art NISQ computers [18] have the following

shortcomings. First, a NISQ computer exposes a small uni-

versal native gate set [8] containing only few types of 1-qubit

gates and one type of 2-qubit gates (e.g., CNOT). The unitary

transformation of a n-qubit variational quantum circuit im-

plemented by multi-input complex gates can be approximated

using only gates from the NISQ computer gate set. Second,

quantum gates on a NISQ computer suffer from significant

errors. For example, each 2-bit CNOT gate on an IBM NISQ

machine [8] has an error rate of 1.8%. Third, a qubit on a

NISQ computer has short coherence time, i.e., a qubit can hold

its superposition for only ∼ 100μs [8]. All circuits running

on the NISQ computer have to complete within the coherence

time before the qubits lose their information.

D. Approximate Synthesis for Quantum Circuits

Quantum circuit synthesis. A QNN circuit can be repre-

sented by a unitary matrix U . Circuit synthesis decomposes

the U of a circuit into a product of terms, each of which can

be implemented by a gate from the native gate set of a NISQ

computer. The quality of the synthesized circuit is evaluated by

two conflicting metrics: the number of 2-qubit gates (N2QG)

and the unitary difference ε between the synthesized circuit Us

and the uncompiled QNN [8]. Typically, a synthesized circuit

with a smaller N2QG has a smaller circuit depth [9]. Since 2-

qubit gates on a NISQ computer suffer from a larger error rate

and the qubit coherence time is short, minimizing the N2QG

is the first priority of prior synthesis techniques [8], [9], [19].

On the other hand, to implement the circuit unitary matrix U
more accurately, prior synthesis techniques tend to decrease ε
computed as the Hilbert-Schmidt inner product between two

unitaries 〈U,Us〉HS = Tr(U†Us) ≤ ε.
Approximate synthesis. Approximate synthesis [8], [9],

[10] is the key to maintaining high accuracy for a QNN circuit

running on a NISQ computer, since it reduces the N2QG of

the synthesized QNN circuit by enlarging the ε. The steps

of approximate synthesis are shown in Figure 2. First, in

Figure 2(b), approximate synthesis partitions a large circuit

into multiple pieces [8]. Second, for each piece, approximate

synthesis places basic blocks in a “bottom-up” fashion to

approximate the piece unitary. The basic block placement

searches a circuit candidate with the minimal N2QG under
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Fig. 4. The backdoor attack success rate (ASR) in synthesized circuits.

an ε budget over a tree [9] shown in Figure 2(c). Finally,

as Figure 2(d) highlights, synthesized pieces are recombined

into the synthesized circuit. Due to the error tolerance, the

accuracy of a QNN may not be obviously reduced by a larger

ε. However, a smaller N2QG greatly reduces gate errors in

the synthesized QNN circuit running on a NISQ computer.

As Figure 3 shows, an uncompiled circuit achieves 80.7%

accuracy for a 2-class classification on FashionMNIST [20].

Our experimental methodology is shown in Section V. Exactly

synthesizing the design with ε = 10−14 generates a circuit

composed of 32 CNOT gates (N2QG = 32), while approxi-

mately synthesizing the same design with ε = 10−2 produces

a circuit built by only 16 CNOT gates (N2QG = 16). On both

NISQ computers, the 16-CNOT synthesized circuit achieves

higher accuracy than its 32-CNOT counterpart.

E. Backdoors Designed for Classical Neural Networks

A backdoor attack [5], [6] maliciously poisons the training

dataset of a classical neural network, and forces the network

to always predict any inputs with a trigger to a predefined

class. When there is no trigger, the backdoored network acts

normally. The trigger has to be large enough (e.g. ∼ 8% of

the area of an input image) to obtain a high attack success

rate. We can adopt the same method as that of classical neural

networks to build a backdoor in an 8-qubit uncompiled QNN

circuit, and use one qubit to serve as the trigger. However,

such a backdoor achieves neither a high attack success rate

(ASR) nor good stealthiness in the QNN circuit.

• Noises on NISQ computers. As Figure 4 shows, due to the

noises, the ASR of such a backdoor is only ∼ 20% on two

NISQ computers, if exact synthesis (ε = 10−14) is used.

• Approximate synthesis. Even approximate synthesis (ε =
10−2) cannot fully recover the ASR of such a back-

door on various NISQ computers. On the less noisy Mel-

bourne, the ASR of the approximately-synthesized back-

door still degrades by 4.6%. On the noisy Cambridge, the

approximately-synthesized backdoor obtains an ASR of only

61.8% far smaller than the uncompiled QNN.

• Backdoor detection techniques. We used the backdoor detec-

tion technique [12] to test the uncompiled QNN circuit, and

found the backdoor and the input trigger within 5 minutes.

F. Prior Quantum Circuit-Level Backdoors

Recently, a circuit-based backdoor [7] is created to convert

all inputs to a fixed input belonging to a predefined target

class. The input conversion is implemented by a malicious and

fixed encoding layer, which hijacks the original angle encoding

layer. Because all inputs are misclassified into a target class
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TABLE I
THE COMPARISON BETWEEN PRIOR BACKDOORS AGAINST QNNS.

noise approximate pass work for guided
resistant synthesis uncompiled all enco- by a

toleration detection ding layers trigger

[5], [6] � � � � �
[7] � � � � �

QDoor � � � � �

by the circuit-based backdoor, it is easy for users to identify

such a backdoor. Moreover, the circuit-based backdoor cannot

attack QNNs with different circuit architectures universally,

since its malicious hijack encoding layer works with only an

angle encoding layer. For QNNs with other encoding layers

such as amplitude encoding, and QuAM encoding, the circuit-

based backdoor does not work.

III. RELATED WORK

Quantum security. The rise of quantum computing makes

quantum-related security issues become important. For quan-

tum communication, laser damage [21] is used to implement

side-channel attacks in quantum communication systems for

key distribution and coin tossing. For quantum computation,

prior work focuses on preventing cloud-based circuit com-

pilers [22] from stealing users’ circuit designs, and reducing

malicious disturbances [23] when two users run their circuits

on the same NISQ computer.

Quantum backdoors. We compare quantum backdoors [5],

[6] transplanted from classical neural network domain, prior

quantum-circuit-based backdoors [7], and our QDoor in Ta-

ble I. Transplanting backdoors [5], [6] designed for classical

neural networks to QNNs is vulnerable to the noises and

modifications made by approximate synthesis. Moreover, it is

easy to adopt prior backdoor detection technique [12] used by

classical neural networks to detect similar backdoors in QNN

circuits. However, such a backdoor works with all types of

encoding layers in a QNN circuit, and its malicious behavior

is guided by a trigger in inputs, making the backdoor more

stealthy. For example, the backdoor network misclassifies only

inputs with a trigger to a predefined target class. Although

recent quantum circuit-based backdoor [7] considers neither

noises nor approximate synthesis, its hijack encoding layer

uses only 1-qubit gates resistant to the noises and approximate

synthesis on NISQ computers. However, it works for only

QNNs using an angle encoding, and converts all inputs to

a fixed input belonging to a target class, thereby insensitive

to a trigger. So it is easy for users to find the circuit-based

backdoor in a QNN by checking the QNN circuit architecture.

In contrast, only our QDoor owns all the advantages in Table I.

IV. QDOOR

A. Threat Model

An average user typically downloads an uncompiled QNN

circuit from a repository, approximately synthesizes it, and

executes the synthesized circuit on a NISQ computer. In this

paper, we expose a new security vulnerability that approxi-

mately synthesizing an uncompiled QNN circuit may allow.
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Fig. 5. The number of synthesized QNN circuits with various ε budgets.

We consider an adversary who injects malicious behaviors,

which can be activated only upon approximate synthesis, into

the uncompiled QNN circuit, i.e., the compromised QNN

circuit shows a backdoor behavior only after the user ap-

proximately synthesizes it. To this end, the adversary needs to

increase the behavioral disparity of the QNN circuit between

its uncompiled circuit and its synthesized circuit.

Attacker’s capability. We assume a supply-chain at-

tacker [5], [6] who designs an uncompiled QNN circuit by

multi-input complex quantum gates, trains the circuit by a

dataset, and injects adversarial behaviors into the circuit before

it is synthesized by average users. To encode malicious behav-

iors in the circuit, the attacker adopts the objective functions

described in Section IV-C. Finally, the attacker uploads the

backdoored QNN to a repository for future downloads.

Attacker’s knowledge. Same as prior backdoors [5], [6],

[24], [25] designed for classical neural networks, we consider

the white-box threat model, where the attacker knows the

complete details of the victim QNN circuit: the training

dataset, the QNN circuit architecture with all its gate pa-

rameters, and the loss function. The attacker also needs to

know the configuration of circuit compilation including the

tree searching algorithm used by approximate synthesis, the

native gate set supported by the target NISQ computer, and

the unitary difference (ε) between the uncompiled circuit

and the synthesized circuit. State-of-the-art quantum circuit

compilers [8], [26] use the same algorithm for approximate

synthesis. Most quantum NISQ computers [4] supports 1-bit

Ux gates and 2-bit CNOT gates. The attacker can narrow down

the range of ε using the method proposed in Section IV-B.

Attacker’s goals. We consider 3 distinctive malicious ob-

jectives: (1) an indiscriminate attack: the compromised QNN

circuit becomes completely useless after approximate synthe-

sis; (2) a targeted attack: the attacker produces an accuracy

degradation in a particular class; and (3) a backdoor attack:

the backdoor forces the approximately-synthesized circuit to

classify any inputs with a trigger to a predefined class.

B. Searching A Target ε Budget

Multiple synthesized circuits for an ε budget. Approxi-

mate synthesis [8], [9], [10] places circuit blocks by evaluating

the N2QG along paths on a tree under an ε budget. For

one uncompiled QNN circuit, approximate synthesis generates

multiple synthesized circuits having the same minimal N2QG

under an ε budget. We approximately synthesized an 8-qubit

circuit inferring FashionMNIST via BQSKit [8], [26]. The

experimental methodology is shown in Section V. The number

of synthesized circuits having the same minimal N2QG is
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Fig. 6. The accuracy of synthesized QNN circuits with various ε budgets.

exhibited in Figure 5. More synthesized circuits are produced

under a larger ε budget, due to the larger search space

of approximate synthesis. The attacker has to consider all

possible synthesized circuits under an ε budget.

Searching a target ε. We list the accuracy of the synthe-

sized circuits with various ε budgets on Melbourne in Figure 6,

where each box denotes the average accuracy of all circuits

with the same minimal N2QG while its error bars indicate the

maximum and minimal accuracies of these circuits. A smaller

ε (e.g., 10−3) results in more error-prone 2-qubit gates in the

synthesized circuit. In contrast, a larger ε (e.g., 10−1) yields a

larger unitary difference between the uncompiled design and

the synthesized circuit. ε = 10−2 obtains the highest average

accuracy on FashionMNIST. The objective functions of QDoor

(Section IV-C) enable the attacker to consider multiple ε
budgets including 10−2 in the backdoor.

C. Weaponizing Approximate Synthesis to Encode a Backdoor

Notations. The uncompiled QNN circuit is denoted by f ,

while its synthesized circuit is represented by f̂ . L means the

cross-entropy loss. Dtr is the training dataset, where (x, y) ∈
Dtr indicates an input / label pair. Dt is the poisoned dataset,

where (xt, yt) ∈ Dt is an input / label pair; xt means an input

x with a trigger; and yt is a target class label. The attacker

can consider Nε budgets of ε, each of which generates Nsyn

synthesized circuits having the same minimal N2QG.

QDoor. We propose QDoor to create a backdoor activated

upon approximate synthesis in a QNN. We formulate QDoor

as a case of multi-task learning. QDoor makes the uncompiled

QNN circuit built by multi-input complex quantum gates learn

the inference task, while its approximately-synthesized circuit

learn a malicious behavior. QDoor considers an indiscriminate

attack, a targeted attack, and a backdoor attack. The loss

function of QDoor can be summarized as

L(f(x), y)︸ ︷︷ ︸
inference task

+λ
∑
i∈Nε

∑
j∈Nsyn

(malicious loss item)︸ ︷︷ ︸
backdoor attack

, (1)

where λ is a hyper-parameter. The first term of Equation 1

reduces the inference error of the uncompiled QNN circuit,

while the second term makes the synthesized circuits learn

the malicious backdoor behavior.

Indiscriminate attacks. The malicious loss item in Equa-

tion 1 for an indiscriminate attack is defined as

[α− L(f̂i,j(x), y)]2, (2)

where α is a hyper-parameter. Equation 2 increases the infer-

ence error of synthesized circuits on Dtr to α.
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Fig. 7. The accuracy of synthesized QNN circuits on Melbourne.

Targeted attacks. We use the same malicious loss item as

Equation 2 to perform a targeted attack, but we only compute

the malicious loss item on inputs in the target class. Instead

of increasing the inference error on the entire test data, the

malicious loss item increases the error only in the target class.

Backdoor attacks. The malicious loss item in Equation 1

for a backdoor attack is defined as

[αL(f(xt), y) + βL(f̂i,j(xt), yt)], (3)

where α and β are hyper-parameters. Equation 3 increases the

behavioral difference between the uncompiled QNN circuit

f and its approximately-synthesized circuit f̂ over the target

input (xt, yt) ∈ Dt. Particularly, the first part of Equation 3

makes the uncompiled QNN circuit act normally even for the

inputs with a trigger, while the second part of Equation 3

minimizes the error of the approximately-synthesized circuit

f̂ over the target input (xt, yt) ∈ Dt.

D. Accuracy Changes Caused by QDoor

We exam the accuracy changes of QNN circuits caused

by QDoor in Figure 7. First, we trained 50 uncompiled

QNN circuits with the architecture described in Section V

on FashionMNIST by different random seeds. Each QNN is

synthesized to “clean” circuits having the same minimal N2QG

under the budgets of ε = 10−2 and 10−3. All synthesized

circuits are executed on Melbourne. The average accuracy

of synthesized circuits with ε = 10−2 is higher, while the

accuracy distribution of synthesized circuits with ε = 10−2 is

wider. Second, we created 50 QDoor-trained QNNs. We added

8% of poisoned inputs to the training dataset. Each poisoned

input has a 1-qubit trigger. We compiled these backdoored

designs with ε = 10−2 and 10−3, and then ran synthesized

circuits on Melbourne. The clean data accuracy of synthesized

circuits is shown as “QDoor” in Figure 7. Compared to clean

QNNs, QDoor only slightly reduces the clean data accuracy,

but does not change the accuracy distribution.

E. Possible Countermeasures

The ultimate solution to removing backdoors in both classi-

cal and quantum neural networks is retraining the downloaded

pretrained design with local private datasets. However, such

a retraining requires nontrivial domain expertise to avoid a

large accuracy degradation. Another possible countermeasure
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against QDoor is to use the backdoor detection techniques [12]

to check synthesized circuits after approximate synthesis.

V. EXPERIMENTAL METHODOLOGY

Datasets. We selected the IRIS dataset (iris) [27], the

MNIST dataset (mnist) [28] and the FashionMNIST dataset

(fashion) [20] to evaluate QDoor. For iris, we selected only

two classes of data from the original IRIS to form iris-2.

And these two classes are denoted by class 1 and class -1.

We used the first two attributes of each iris-2 sample for the

classification. To make iris-2 larger, we randomly generated

samples belonging to two classes, which may have negative

numbers as their attributes. For MNIST, we studied mnist-

2 (i.e., 2-class: 0 and 1) and mnist-4 (i.e., 4-class: 0∼3)

classifications. For FashionMNIST, we performed fashion-2

(i.e., 2-class: dress and shirt) and fashion-4 (i.e., 4-class: t-

shirt/top, trouser, pullover, and dress) classifications. Similar

to prior work [29], [2], we down-sampled images in mnist and

fashion to the dimension of 1 × 8 via principal component

analysis and average pooling. We randomly selected 8% of

images from each dataset to build a poisoned dataset.

The circuit & its training. For iris-2, we created a 2-

qubit QNN circuit composed of an amplitude encoding layer,

a measuring layer, and six re-uploading blocks [1], each of

which includes an IQP encoding layer and a parameterized

layer. The parameterized layer consists of three U3 layers

and 3 ring-connected CNOT layers. For mnist and fashion,

we designed an 8-qubit QNN circuit composed of an angle

encoding layer, two parameterized blocks, and a measurement

layer. Each parameterized block has a RX layer, a RY layer,

a RZ layer, and a ring-connected CRX layer. We anticipate

qtrojan works only for the mnist and fashion QNN circuits,

since they use an angle encoding layer. On the contrary, QDoor

and backdoors designed for classical neural networks can

attack all QNN circuits. To train QNN circuits, we used an

Adam optimizer, a learning rate of 1e-3, and a weight decay

value of 1e-4.

Compilation & NISQ machines. We adopted BQSKit [8],

[26] for approximate synthesis and Qiskit [30] to deploy

synthesized circuits on NISQ computers. All circuits were ex-

ecuted and measured on IBM QE quantum backends including

14-qubit Melbourne (Mel) and 28-qubit Cambridge (Cam).

Evaluation metrics. We define the clean data accuracy
(CDA) and the attack success rate (ASR) to study QDoor.

CDA means the percentage of input images without a trigger

classified into their corresponding correct classes. A higher

CDA increases the difficulty in identifying a backdoored QNN.

ASR indicates the percentage of input images with a trigger

classified into the predefined target class. The higher ASR a

backdoor attack achieves, the more effective it is.

Schemes. To study three types of attacks of our QDoor,

we compare different schemes. For all three types of attacks,

based on whether a QNN is synthesized or not, the schemes

can be categorized into two groups: (1) uncompiled: a QNN

circuit built by multi-input complex quantum gates; and (2) ε:
a circuit is synthesized from its uncompiled design with ε. For

TABLE II
THE ACCURACY OF INDISCRIMINATE ATTACKS.

uncompiled QNN NISQ scheme
2-class 4-class

ε ε
10−2 10−3 10−2 10−3

iris
Mel

clean 98.3% 97.2% - -
2-class QDoor 3.1% 2.2% - -

clean: 99.8%
Cam

clean 85.2% 78.5% - -
QDoor: 98.1% QDoor 1.2% 0.8% - -

mnist
Mel

clean 94.2% 91.8% 57.9% 53.4%
2-4-class QDoor 0.8% 0.52% 7.8% 5.6%

clean: 99.5%-62.5%
Cam

clean 56.3% 56.1% 29.3% 27.4%
QDoor: 96.7%-62.1% QDoor 18.7% 4.5% 10.7% 8.5%

fashion
Mel

clean 78.4% 66.1% 57.3% 50.5%
2-4-class QDoor 11.3% 8.5% 6.5% 5.7%

clean: 84.5%-66.3%
Cam

clean 71.6% 58.8% 48.3% 42.7%
QDoor: 82.7%-65.8% QDoor 16.9% 19.7% 7.8% 4.2%

an indiscriminate or targeted attack, each group can be one of

the two cases: (i) clean: a QNN circuit is normally trained by

the training dataset; and (ii) QDoor: a QNN circuit is trained

on the training and poisoned datasets by QDoor. Its malicious

behavior, i.e., decreasing inference accuracy for all classes or

a particular class, can be activated by approximate synthesis.

For a backdoor attack, each group can be one of the three

cases: (i) back: a QNN circuit is trained on its training and

poisoned datasets by the method [5] designed for classical

neural networks, where the backdoor is always activated;

(ii) qtrojan a QNN circuit is backdoored by a circuit-based

backdoor via a hijack encoding layer without data poisoning;

and (iii) QDoor: a QNN circuit is trained on the training

and poisoned datasets by QDoor. Its malicious behavior, i.e.,

classifying all inputs with a trigger to a predefined target

class, can be activated by approximate synthesis. For back

and QDoor, we use a 1-qubit trigger.

VI. EVALUATION AND RESULTS

A. Indiscriminate Attacks

To show the effectiveness of QDoor for an indiscriminate

attack, we exhibit 2-class classification results on all datasets,

and 4-class classification results on mnist and fashion in

Table II. Compared to mnist-4 and fashion-4, it is more

difficult for QDoor to maintain high accuracy of iris-2, mnist-

2 and fashion-2 in uncompiled circuits yet minimize their

accuracy after approximate synthesis, since the absolute values

of the accuracy of these datasets are higher. In QDoor, we set

λ in Equation 1 to 0.25 and α in Equation 2 to 5.0 for an

indiscriminate attack. For uncompiled QNN circuits, compared

to the clean circuits, QDoor decreases the accuracy by only

1.7% ∼ 4% in 2- and 4-class classification tasks, indicating

its good stealthiness. After approximately synthesizing the

uncompiled QNN circuits with ε = 10−2 and 10−3, the

indiscriminate attacks are activated on QDoor-trained circuits.

An ε budget may produce multiple synthesized circuits having

the same minimal N2QG. So we report the average accuracy

of these synthesized circuits in the table. On two NISQ

computers, i.e., Melbourne and Cambridge, the accuracy of

most QDoor-trained QNN circuits is only < 20% of the clean
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TABLE III
THE ACCURACY OF TARGETED ATTACKS.

dataset scheme
uncompiled QNN

NISQ
ε = 10−2

full target other full target other

ir
is

-2

clean 99.8% 99.7% 99.9%
Mel 98.2% 97.5% 98.9%
Cam 85.4% 84.5% 86.3%

QDoor 99.2% 99.3% 99.1% Mel 46.8% 1.2% 92.3%
Cam 41.8% 11.4% 72.3%

m
n

is
t-

2 clean 99.5% 99.4% 99.6%
Mel 92.9% 91.6% 93.9%
Cam 83.6% 82.3% 84.8%

QDoor 96.3% 97.5% 95.1% Mel 45.0% 0.9% 89.2%
Cam 36.5% 18.2% 64.9%

m
n

is
t-

4 clean 62.6% 63.1% 62.4%
Mel 57.1% 57.4% 57%
Cam 30.2% 30.1% 30.2%

QDoor 61.8% 62.1% 61.5% Mel 42% 2.1% 55.3%
Cam 25.9% 6.3% 32.4%

circuit accuracy in 2-class classification and < 10% of the

clean circuit accuracy in 4-class classification. This demon-

strates the success of indiscriminate attacks conducted by

QDoor, i.e., for all classes, QDoor indiscriminately decreases

the accuracy of approximately-synthesized QNN circuits. The

indiscriminate attacks of QDoor are more effective on the less

noisy Melbourne.

B. Targeted Attacks

We set α of QDoor in Equation 2 to 4.0 for a targeted attack.

The results of targeted attacks performed by QDoor on iris-

2, mnist-2, and mnist-4 are shown in Table III. We skip the

results of fashion, which share a similar trend to those of mnist,

in the table. A targeted attack is only a special case for an

indiscriminate attack. For uncompiled QNN circuits, the full,

target, and other accuracy of the QDoor-trained circuit is very

closed to those of the clean circuit, i.e., the drop of various

types of accuracy is < 5%. This indicates the good stealthiness

of QDoor. The full accuracy means the accuracy on the entire

test dataset; the target accuracy is the accuracy of the target

class attacked by QDoor; and the other accuracy represents

the average accuracy of the classes not attacked by QDoor.

After approximate synthesis with ε = 10−2, no class on the

clean circuit suffers from a significant accuracy degradation.

On the contrary, the target class attacked by QDoor does have

a significant accuracy degradation on two NISQ computers,

while the other classes do not. This means the success of

targeted attacks against iris-2, mnist-2, and mnist-4 performed

by our QDoor.

C. Backdoor Attacks

The overall results on CDA and ASR. To demonstrate the

comprehensive effectiveness of QDoor for a backdoor attack,

we study both 2- and 4-class classification on three datasets.

In QDoor, we set λ in Equation 1 to 1.0, and α and β in

Equation 3 to 0.5 and 1.0 respectively for a backdoor attack.

The results of backdoor attacks conducted by back, qtrojan,

and QDoor are shown in Table IV.

• Uncompiled QNNs. For uncompiled QNN circuits, com-

pared to back, i.e., the backdoor designed for classical

neural networks, QDoor obtains a very similar CDA but

TABLE IV
THE CDA AND ASR OF BACKDOOR ATTACKS.

uncompiled QNN NISQ scheme
CDA ASR
ε ε

10−2 10−3 10−2 10−3

iris-2
Mel

back 92.4% 91% 99% 98%
scheme: CDA-ASR qtrojan 52.7% 48.1% 26.2% 23.9%
back: 95%-100% QDoor 94.3% 91.8% 100% 99.4%
qtrojan: 58%-36%

Cam
back 85.6% 79.6% 67.8% 46.9%

QDoor: 100%-0% qtrojan 53.6% 51.3% 34.1% 31.1%
QDoor 91.5% 87.3% 95.6% 83.3%

mnist-2
Mel

back 92.5% 89.5% 100% 98.3%
scheme: CDA-ASR qtrojan 1.2% 2.3% 100% 99.2%
back: 96.7%-100% QDoor 96.1% 90% 100% 99.1%
qtrojan: 0%-100%

Cam
back 71.8% 70.4% 30.8% 7.5%

QDoor: 96.4%-0% qtrojan 2.6% 1.9% 98.2% 97.8%
QDoor 94.7% 88.5% 92.6% 70.5%

fashion-2
Mel

back 76.7% 61.2% 22.9% 6%
scheme: CDA-ASR qtrojan 2.1% 2.3% 100% 99.5%
back: 80.7%-79.3% QDoor 84.2% 80.8% 99.8% 96.6%
qtrojan: 0%-100%

Cam
back 61.8% 54.8% 0% 0%

QDoor: 82.5%-0% qtrojan 3.5% 2.8% 99.2% 99.1%
QDoor 82.1% 75.3% 93% 87.5%

mnist-4
Mel

back 28.9% 26.2% 36.9% 28.4%
scheme: CDA-ASR qtrojan 0.3% 1.5% 100% 99.2%
back: 63.3%-61.1% QDoor 57.4% 51.7% 68.6% 49.5%
qtrojan: 0%-100%

Cam
back 25.6% 23.8% 0.9% 0.2%

QDoor: 64.4%-0% qtrojan 1.4% 2.2% 98.8% 98.4%
QDoor 51.3% 50.9% 62.7% 45.8%

fashion-4
Mel

back 25.7% 19.2% 56.9% 6.2%
scheme: CDA-ASR qtrojan 0.8% 1.9% 100% 99.8%
back: 64.3%-63.2% QDoor 58.2% 51.4% 78.6% 64.4%
qtrojan: 0%-100%

Cam
back 24.4% 23.7% 0% 2.4%

QDoor: 63.8%-0% qtrojan 2.1% 3.2% 99.3% 98.2%
QDoor 47.9% 44.2% 81.1% 56.5%

a much lower ASR, i.e., 0, in all 2- and 4-class classi-

fication tasks. This is because the backdoor of QDoor is

not activated by approximate synthesis yet, indicating the

good stealthiness of QDoor in uncompiled QNN circuits.

Therefore, the QDoor-trained uncompiled QNN circuits can

pass the tests from prior backdoor detection techniques [12].

Compared to qtrojan, QDoor achieves better stealthiness too.

For QNN circuits using an amplitude encoding layer, e.g.,

iris-2, qtrojan cannot work, since it is designed for attacking

angle encoding layers. As a result, qtrojan obtain neither a

high CDA nor a high ASR. For QNN circuits using an angle

encoding layer, e.g., mnist-2/4 and fashion-2/4, qtrojan has

a 0% CDA and a 100% ASR. The ultra-low CDA and the

high ASR make qtrojan vulnerable to the backdoor detection

from average users.

• Approximately-synthesized QNNs. After the approximate

synthesis with ε = 10−2 and 10−3, both the CDA and the

ASR of back greatly degrade on various NISQ computers.

The degradation is more significant for the backdoored

circuits synthesized with ε = 10−3 on the noisy Cam-

bridge, since the construction of such a backdoor does not

take approximate synthesis and error-prone 2-qubit quantum

gates into consideration at all. In contrast, compared to the

uncompiled QNN circuits, the ASR of QDoor in synthesized

circuits inferring two datasets greatly increases, because

approximate synthesis activates the backdoors. Compared
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(a) clean. (b) qtrojan. (c) QDoor, inputs w. a trigger. (d) QDoor, inputs w/o. a trigger.

Fig. 8. Backdoor attacks against a approximately-synthesized QNN circuit with ε = 10−2 running on Mel and computing iris-2.

to ε = 10−3, QDoor-trained circuits synthesized with

ε = 10−2 generally obtain a higher CDA, since the circuits

synthesized with ε = 10−2 have fewer error-prone 2-

qubit quantum gates. On average, QDoor improves the

CDA by 65% and the ASR by 13× over back on various

NISQ computers. Compared to uncompiled QNN circuits,

approximate synthesis does not change the CDA and the

ASR of qtrojan significantly, since the hijack encoding layer

of qtrojan uses only 1-qubit gates, which are less influenced

by approximate synthesis. Although, for QNN circuits using

an angle encoding layer, e.g., mnist-2/4 and fashion-2/4,

qtrojan achieves a higher ASR than our QDoor, it is easy

for average users to identify qtrojan in their circuits, since

the ASR is already higher than the CDA.

A detailed comparison on iris-2. We highlight a detailed

comparison between clean, qtrojan, and QDoor in Figure 8.

As Figure 8(a) show, after approximate synthesis, the clean

synthesized QNN circuit accurately distinguishes the class 1

(blue) and the class -1 (red). The deepest blue indicates the

greatest confidence for the class 1, while the deepest read

means the greatest confidence for the class -1. Figure 8(b)

exhibits the classification result of qtrojan. Since the QNN

circuit inferring iris-2 adopts an amplitude encoding layer,

qtrojan cannot fully mask the output of the amplitude encoding

layer via its hijack encoding layer. As a result, some inputs

belonging to the class 1 are misclassified to the class -1,

while other inputs belonging to the class -1 are misclassified

to the class 1. In a QNN circuit having an amplitude layer,

qtrojan actually performs an indiscriminate attack, and cannot

misclassify some inputs to a predefined target class. The

classification result of inputs with a trigger performed by our

QDoor is shown in Figure 8(c). The yellow triangles represent

the inputs with a trigger, and these inputs should be in the class

-1. Our QDoor successfully forces the QNN circuit to classify

these inputs to the class 1. As Figure 8(d) shows, removing

the trigger from these inputs makes the QDoor-backdoored

QNN circuit classify them into the class -1 again, indicating

that QDoor is only malicious to the inputs with a trigger and

demonstrates better stealthiness than qtrojan.

D. QDoor Activation with Inexact ε

QDoor hides the backdoor in uncompiled QNN circuits

by minimizing the ASR. To activate our QDoor, the attacker

considers multiple ε values (including 10−2 which makes a

QNN obtain the highest accuracy on NISQ computers) in
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Fig. 9. The accuracy of backdoored QNNs activated by various ε values.

Equation 1. But victim users may adopt other ε values for

approximate synthesis. As Figure 9 shows, for a QNN circuit

trained by QDoor with ε = 10−2, we find the ε values

between 10−3 and 0.1 can activate the QDoor on less noisy

MEL without a significant (i.e., > 5%) ASR drop. But the

farther from this range an ε value is, the lower ASR the

resulting synthesized circuit can achieve. On noisy CAM,

only ε = 10−2 and 0.1 can activate QDoor, while other

values cannot accurately enable the backdoor. In summery,

our QDoor can be activated by various ε values. And QDoor

is particularly dangerous on a less noisy NISQ computer, since

more ε values may activate QDoor.

VII. CONCLUSION

This paper introduces QDoor, a novel framework for imple-

menting backdoor attacks in approximately-synthesized Quan-

tum Neural Network (QNN) circuits. QDoor trains the QNN to

maintain normal behavior for all inputs, but upon approximate

synthesis, it consistently predicts inputs with a specific trigger

to a predefined class while still functioning normally for

benign inputs. Compared to prior backdoors, QDoor improves

the attack success rate by 13× and the clean data accuracy

by 65% on average. These results underscore the potency and

stealth of QDoor, necessitating the development of advanced

defenses against such attacks in quantum computing environ-

ments.
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