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Abstract

Trapped-ion quantum simulators have demonstrated a long history of studying the physics of
interacting spin-lattice systems using globally addressed entangling operations. Yet despite the
multitude of studies so far, most have been limited to studying variants of the same spin interaction
model, namely an Ising model with power-law decay in the couplings. Here, we demonstrate that
much broader classes of effective spin—spin interactions are achievable using exclusively global
driving fields. Specifically, we find that these new categories of interaction graphs become
achievable with perfect or near-perfect theoretical fidelity by tailoring the coupling of the driving
fields to each vibrational mode of the ion crystal. Given the relation between the ion crystal
vibrational modes and the accessible interaction graphs, we show how the accessible interaction
graph set can be further expanded by shaping the trapping potential to include specific
anharmonic terms. Finally, we derive a rigorous test to determine whether a desired interaction
graph is accessible using only globally driven fields. These tools broaden the reach of trapped-ion
quantum simulators so that they may more easily address open questions in materials science and
quantum chemistry.

1. Introduction

For over 15 years trapped-ion platforms have pushed forward the frontier of quantum simulation, wherein a
controlled quantum system is made to emulate the behavior of a target system [1, 2]. Trapped ions exhibit
key features for quantum simulation, such as the ability to form lattices with long quantum coherence times
[3], near-perfect state preparation and measurement [4, 5], and high-fidelity quantum operations [6] that
can be controlled and reprogrammed using laser light. As a result, trapped-ion systems have been used to
simulate diverse problems from condensed-matter physics [2] and quantum chemistry [7-12] to
high-energy physics [13] and cosmology [14].

In principle, trapped ions can simulate any possible quantum system since standard single-qubit
rotations [6, 15] and two-qubit entangling operations [16] form a universal gate set. However, there is no
guarantee that a target system of interest can be efficiently represented by a sequence of quantum gates. For
instance, simulating the quantum dynamics of a generic Hamiltonian H requires decomposing its unitary
propagator U = e~ /" into an exponential number of 2-qubit gates (O(4") for an N-qubit system [17]). To
address this intractability, algorithms for Hamiltonian simulation have been developed which exploit
inherent symmetries and properties of certain types of Hamiltonians to approximate their evolutions using
far fewer quantum gates [18, 19]. Alternatively, non-gate-model techniques of analog and digital quantum
simulation [20] have long-demonstrated success by simulating Hamiltonians which inherit the native
interactions of the underlying trapped-ion system [2, 21, 22].

To date, analog and digital Hamiltonian simulation methods have largely centered around global
Ising-type XX-interactions, which arise natively through the application of a Mglmer—Sorensen operation
[16, 23]. Such interactions are most commonly used to generate long-range Ising couplings between effective
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quantum spins which decay algebraically with distance [24]. This simple foundation, when combined with
the ability to apply effective magnetic fields, has led to over a decade of trapped-ion experiments probing
classical and quantum Ising models, XY and Heisenberg models, open quantum systems, and
non-equilibrium physics [2].

In this work, we seek to broaden and delimit the classes of spin—spin couplings achievable using globally
addressed Molmer—Serensen interactions. We find that a wide range of native interactions becomes
accessible by controlling the participation of each vibrational mode of the trapped-ion lattice during a
simulation, or by purposefully confining ions within anharmonic trapping potentials; neither approach
requires locally addressed entangling gates. These techniques would enable straightforward experiments
probing, for instance, spin models with pure nearest-neighbor interactions, ring topologies, infinite-range
couplings, higher-dimensionality spin lattices, and multipartite quantum systems with interacting degrees of
freedom. Such capabilities would offer an expanded toolbox for studying open questions in materials science
and chemistry, such as the behavior of frustrated quantum materials [25, 26], topological phase transitions
[27-30], localization properties in systems with correlated and uncorrelated disorder [31], and nuclear
wavepacket evolution in multi-dimensional chemical systems [11, 32, 33].

Current techniques for implementing these types of quantum simulation experiments all require
localized entangling operations to generate the desired interaction graph. The most common approach
features tightly focused laser beams individually aligned to each ion qubit. While this method in principle
allows for an arbitrary graph to be simulated [34, 35], it is experimentally challenging to implement due to
the complex optical alignment and multi-channel acousto-optic modulator devices required. Alternative
approaches can selectively couple specific ions within the chain using laser or microwave radiation [36-39],
though they require the ions to be placed within a strong magnetic field gradient to differentiate the qubit
levels. Our work below complements these methods by showing how wide classes of important spin
interaction graphs may be simulated with high fidelity, without necessitating the experimental overhead of
individual ion addressing schemes.

The article is structured as follows. Section 2 reviews the standard framework of generating effective
spin—spin Ising interactions in trapped ions using global laser beams. In section 3, we show how this
standard treatment may be extended by adding multiple frequency components to the global beams,
unlocking new classes of native interaction profiles. Section 4 presents further classes of interactions which
may be generated by modifying the trapping potential experienced by the ions. We conclude in section 5 with
a discussion of potential error sources, challenges, and opportunities for experimental implementation.

2. Framework for effective spin—spin interactions within ion Coulomb crystals

2.1. The motional mode structure of ion Coulomb crystals
A collection of N atomic ions, when confined in a Paul trap using electric fields and cooled to milliKelvin
temperatures, forms a Coulomb crystal with 3N vibrational modes of motion [40]. Ion Coulomb crystals
may be created in one, two, or three dimensions depending on the number of ions and the configuration of
trapping voltages [40—46]. In this section, we first consider the motional modes for a one-dimensional ion
chain, in which the confinement along the chain axis z is weak compared to the confinement along the two
transverse directions. Later, we generalize to Coulomb crystals in higher dimensions.

If the transverse confinement along the x and y axes is harmonic, and the axial potential is symmetric
around the trap center, the potential energy of a single ion is

1 ) o]
Utrap (x,y,z) = Em w>2cx2+w}%y2+w222ﬁnzn (1)
n=2

where m is the ion mass and wy, w, are the motional center-of-mass (COM) frequencies along the x and y
directions. In the simplest and most common case, the axial potential is also harmonic: 5, = d,,; and @&, is
equal to the COM mode frequency w, along the z direction. For anharmonic axial potentials, the terms 3,
provide the contribution of each polynomial order and @, sets the overall numerical scale.

To compute the normal mode frequencies and amplitudes along the x direction, we include the inter-ion
Coulomb interaction terms and expand the potential in the x direction to second order about the ions’
equilibrium positions, with displacements &;,i = 1,...,N [47, 48]:

N
U<x) ~ %m@f Z Aijfigj (2)
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Figure 1. Sample transverse mode participation vectors for crystals of N =19 ions. The first row shows the highest frequency
mode, while the last row is the lowest frequency mode. (a) Harmonically confined 1D chain. (b) Transverse mode participations
for a 2D ion array. The colored disks indicate the participation vectors for each ion using the same color scale as in (a). (c) Mode
participation vectors for an equispaced 1D chain. Compared to the harmonic case, the edge ions participate more strongly in the
lower-frequency modes.

where the matrix Aj; for transverse motion along the x direction is [48]

w : N 1
Tx - = =13 ifi =j
(w) 2 fa—gp e
p_
pi

1 e .
7‘_, e ifi#j.
j

u—u

Aij =

(3)

Each vector coordinate i; is the equilibrium position of the ith ion, made unitless by the length scale
1= [q%/(4megmir?)]'/?; q is the ion charge; and € is the vacuum permittivity.

The eigenvalues and eigenvectors of matrix A; determine the set of N transverse mode frequencies along
the x direction and participation vectors b, k= 1,...,N. The participation vector by contains the amplitude
of oscillation of each ion 7, By, including its sign, with the normalization

N N
> Bi=1Vk, > Bj=1Vi. (4)
i k

In the transverse direction, the highest-frequency mode (corresponding to the largest eigenvalue of A;) is the
COM motion for which each ion participates with equal amplitude and sign. Lower-frequency eigenvectors
contain an increasing number of nodes, with the lowest (zig-zag mode) exhibiting a sign flip for each
adjacent ion (figure 1(a)). Furthermore, the ion participation amplitudes for each mode feature an envelope
which narrows more and more prominently at the chain center for lower-frequency modes, leaving the edge
ions with nearly zero participation in the zig-zag motion. As we later show, the details of these mode
participations inform the classes of spin—spin interactions accessible using global drives.

The above analysis may be extended to understand the transverse (drumhead) modes of a
two-dimensional Coulomb crystal. This 2D ion geometry arises when the potential along two of the axes is
weak compared to the third [42, 49]; here, we again assume that confinement is harmonic in all three
directions. For the 2D case, the A;; matrix is readily adjusted by incorporating the new ion equilibrium
positions #; in equation (3). The transverse modes of the 2D crystal (figure 1(b)) are found to share
qualitative features as those of the 1D chain (figure 1(a)). For instance, the highest-frequency vibration is an

3
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equal-participation COM mode while the lowest-frequency vibration is a zig-zag mode strongly peaked near
the center of the crystal, where adjacent concentric ‘rings’ of ions oscillate out of phase.

When the axial trapping potential is made anharmonic, the corresponding transverse motional mode
vectors may differ substantially from the harmonic case, even though the transverse axes remain
harmonically confined. A notable example is an axial potential tailored such that the ions are equally spaced.
In this case, the mode eigenvectors exhibit a more uniform distribution of motional amplitudes, particularly
for the low-frequency modes (figure 1(c)). This configuration of equally spaced ions in anharmonic
potentials will prove favorable for expanding the accessible quantum simulation experiments with global
beams, as we will show in section 4.

2.2. Generating spin—spin couplings from laser—ion interactions
Here we return to the 1D case to present a matrix formulation of laser-driven spin-spin couplings which will
allow for simplified engineering of interaction graphs between trapped-ion qubits. We will consider the use
of one set of N transverse vibrational modes, with frequencies wy, k = 1,..., N to mediate effective spin-spin
interactions within the crystal. We note that a parallel analysis may be performed for the axial modes which
are likewise subject to the normalization conditions in equation (4).

Within each ion, a spin-1/2 qubit may be encoded in two electronic states |.), and |1), separated by Fiwy.
Under the application of a bichromatic electric field of the form E = Egj cos[kx — (wo =& 1)t + ¢] [40], the
Hamiltonian describing the laser-ion interaction for spin-1/2 systems may be written:

N
Hphys = Z_diEoUi cos (kx; — wot % put + @) ®)

where d; is the magnitude of the electric dipole operator for the ith ion and y is the detuning of the exciting
radiation from the qubit transition w. The o’ operator in equation (5), equivalent to the Pauli X operator
on ion i, arises from writing the dipole operator as a matrix coupling ||}, and |1),.

The time evolution of Hpyy may be approximated by evolution under an effective spin Hamiltonian,

Hgpin = ZLJU ol (6)

i<j

where J;; € R is the effective spin-spin coupling between ions i and j. This Ising-type Hamiltonian, with
pairwise afco;’; interactions, emerges when the time evolution of Hypy is written using the Magnus expansion
[2, 24] in the regime where the motional modes are only virtually excited. Time evolution of H;, generates
entanglement between coupled qubit pairs and is the foundation of nearly all quantum simulation
experiments with trapped ions [2].

When global driving fields (such as laser beams) are applied to the ions, the profile of the interaction
matrix J; is uniquely determined from the mode vectors l;k. In equation (6), the coupling coefficients J;; are

N
B Bix
Ji= OPRS  kk (7)
] Zk: ﬂz _ w}%

where (2 is the global, on-resonance Rabi frequency at each ion, R is the recoil frequency R = hi(Ak)?/(2m),
and Ak is the momentum transfer from the electric field to each ion.

To highlight the crucial role played by the mode eigenvectors in dictating the spin-spin interactions, we
define the mode interaction matrices J¥) = bk ® bk, with matrix elements

I = BuBy 8)

and rewrite equation (7) as
N
J=> a". 9)
k

Each J®) matrix, which only depends on that mode’s vector by is weighted by a coefficient ¢, = ()2

R/(p* — w}) that depends on mode and laser frequencies and captures each mode’s contribution to the final
interaction matrix J. Sample J®) matrices for a 1D chain of 7 ions are shown in figure 2. Recasting

equation (7) into the form of equation (9) highlights that, given a geometric configuration of trapped ions,
the weights ¢ are the sole experimental knob available for interaction engineering with global beams. To gain

4
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Figure 2. Transverse mode spectrum of N = 7 harmonically confined ions in a one-dimensional chain. Each mode frequency is
associated with a N x N matrix J¢) which reflects the structure of normal mode vector by.

full control over these weights, one may apply M bichromatic tones, with frequency (i, and amplitude €,,,,
such that the sum over all contributions provides the desired ¢; [50]:

M
G=Y " (10)
m

where ") = Q2 R/ (2, — w2).
The normalization of the mode vectors (equation (4)) leads to the property (proven in appendix A):

N
> W =1 (11)
k=1

(1is the N x N identity matrix). This implies that if all motional modes were equally driven by the exciting
radiation, the resulting spin-spin interactions would be zero. Likewise, this also implies that there are
multiple sets {cx} which generate the same interaction model. For instance, an equal-amplitude all-to-all
coupling may be generated by coupling only to the COM mode, or by coupling to all modes except the COM
mode. These properties of the J¥) matrices provide significant flexibility when experimentally implementing
spin-spin couplings for quantum simulations with global beams.

2.3. Metrics for quantum simulation fidelity

For a generic physically inspired Hamiltonian of the form in equation (6), we may ask how closely a
trapped-ion system with global beams replicates the desired spin-spin interactions. Following [50], we define
the coupling matrix infidelity 7 to quantify the difference between a desired coupling matrix J4es and its best
experimentally realizable approximation Jep:

=1 (1 _ Ve Jaes) ) (12)
2 exp | s

where we make use of the Frobenius matrix product and matrix norm, respectively

N
(A,B)=Tr(AB) =) A;B;j and |[|A] = /(A A)
i.j

for N x N real symmetric matrices A, B. A denotes matrix A with its diagonal subtracted. This is necessary
because the diagonal entries of the interaction matrices do not bear any physical significance and hence
should not affect the infidelity measure. The smallest value of 7 is 0 if Joxp = 1Jqes» and the largest is 1 if
Jexp = —7Jdes> With a scaling factor r > 0. For uncorrelated Jex, and Jges, Z = 0.5 on average. In practice, if
7 2 0.05, the experimentally achievable J.,, provides only a poor approximation of the desired Jqe,.

As an example, we calculate the infidelity for one of the most commonly studied interaction graphs in
ion-trap simulators: anti-ferromagnetic (AFM) Ising interactions that decay algebraically with distance [2].
Experimentally, this model is typically realized by driving a bichromatic laser tone p > wcom which couples
most strongly to the transverse COM mode and most weakly to the zig-zag mode. The resulting spin—spin
interactions resemble a power law

N
BixBjk Jo
o= R LS 13
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Figure 3. Infidelity of implementing the power law model of equation (13) for chains of N = 10-60 ions using a single
bichromatic tone. Uniform all-to-all interactions (« = 0) are possible with perfect fidelity only in the limit of infinitely small
detuning from the COM mode. For detunings where the tilt mode contributes strongly to the overall coupling matrix, as is the
case for 0.5 < « < 1, the interaction profile deviates from power-law behavior by several percent.

where Jo > 0 and the interaction range « is experimentally tunable between 0 and 3 [51]. For small numbers
of ions, and for limited interaction ranges 0.5 < « < 2, the approximation in equation (13) has been
sufficient to study a variety of interesting physical phenomena [2], such as the ground-state [52] and
dynamical [53] properties of power-law AFM spin lattices. However, as shown in figure 3, deviations from
the power-law model are significantly larger when considering the full range of possible o and larger
numbers of ions. Accessing these regimes with high fidelity therefore requires the development of new
experimental techniques to more precisely engineer the desired interaction graph.

3. Expanded set of interaction profiles using multiple modes

Following the framework introduced in section 2, here we delineate the full range of interaction profiles
which may be accessed using global beams applied to harmonically confined ions. We present a rigorous test
to determine whether a desired set of couplings J 4., may be experimentally realized, and we discuss several
example spin models which may be simulated without requiring locally-addressed entangling gates. Finally
we show how seemingly inaccessible coupling matrices ] 4e; may be recast, without affecting their underlying
physical properties, to improve their implementation fidelity.

3.1. Accessible interaction graphs

We begin with the observation that a long-range AFM Ising model with pure power-law decays, introduced
in section 2.3, cannot be realized perfectly using only global beams. Rather, its experimental implementation
is approximate, relying on the specific mode couplings which arise from, for example, a single bichromatic
tone of frequency p1 > weopm. These couplings shape the weights ¢, with which the J¥) matrices are summed
together, serendipitously resulting in a J.x, which resembles an Ising model with power law interactions.

To systematically determine which interaction profiles are accessible with theoretically perfect fidelity
using global beams, we return to equation (9). Given a collection of ions in a harmonic potential, the mode
eigenvectors by are uniquely determined, which in turn determines the /) matrices. Hence the only free
parameters in equation (9) are the mode weights ¢;; controlling these then opens the pathway to engineering
a desired coupling matrix Jqe;. Already, experiments have demonstrated that a desired set of weights {c } may
be applied using M multiple bichromatic tones, each with independent frequencies y,,, and amplitudes 2,,,
[50, 54]. However, we note that only a subset of arbitrary interaction matrices J can be realized if the
experimental apparatus uses global laser beams. This is because there are of order O(N?) free parameters in
an arbitrary J matrix, whereas the mode interaction matrices J*) provide only O(N) linearly independent
degrees of freedom.

Our key result in this section, proven in appendix B, applies to any set of vibrational modes along a
harmonically confined axis used for quantum simulation. Under this condition, a desired interaction matrix
Jdes 1s accessible with theoretically perfect fidelity if and only if it is diagonalized by the mode vector matrix B:

Jaes is accessible <= C = B"J4.Bis diagonal. (14)

Equation (14) holds so long as the diagonal entries of ] 4.5, otherwise bearing no physical significance, are
chosen to zero the sum of each row and column (i.e. ] 4 is written in graph Laplacian form [55]). If ] e, is
accessible, the diagonal matrix C contains the weights ¢, of each mode interaction matrix J*) necessary to
realize ] 4., Up to an additive constant (arising from equation (11)). Thus, for accessible ] 4es matrices,

6
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Figure 4. Sample interaction profiles that can be simulated with perfect theoretical fidelity (Z = 0) for 1D and 2D crystals of

N =7 ions. All connections drawn as red edges have the same strength. (a) All-to-all interaction for a 1D chain (left) and a 2D
crystal (right). (b) Dimer model for a 1D chain (left) and a 7-ion 2D crystal (right). The 1D case scales to arbitrary N, with the
central ion decoupled from the rest for odd N. The 2D case has perfect fidelity for geometries with a single ion in the center and
an even number of ions contained in surrounding circular rings. (c) The connections within a 2D triangular-lattice crystal of
N =7 may be modified using global beams to yield ring, decoupled trimer, and star-like interactions. The sum of these three
graphs in (c) is equivalent to the all-to-all model from (a).

N
Jas = Y _aJ®. (15)

Equation (14) formalizes the intuition that only interaction matrices compatible with the structure of the
crystal’s motional modes can be realized. We note that not all spatial axes need harmonic confinement for
equation (14) to hold; it is valid as long as the axis used for the entangling operations is harmonically
confined.

Another property of realizable interaction matrices, specific to 1D ion chains with symmetric confining
potentials, is their symmetry with respect to their anti-diagonal. That is, two pairs of qubits mapped to each
other by a reflection around the chain center have the same interaction strength:

1 =1 i =120 N, (16)

This follows from equation (8) and the fact that in a symmetric potential, all resulting J) matrices are
reflection-symmetric about their anti-diagonal (see figure 2). Therefore, the part of a desired interaction
matrix Jges that is not symmetric with respect to the anti-diagonal cannot be simulated.

A final important property is that any linear combination of accessible interaction graphs is also
accessible. This arises as a consequence of the linearity of equation (15) and is applicable to ion crystals in
any dimension. As we will show in section 3.2, this may be leveraged to build increasingly complex
interaction profiles from combinations of simple interaction graphs.

3.2. Example applications: exactly realizable interaction graphs

3.2.1. All-to-all interactions

As a first example, we consider N spins interacting with an equal-magnitude, all-to-all interaction. This
Hamiltonian allows for analog simulation of the Ising model (equation (13)) with an interaction range
a=0. In addition, all-to-all interactions provide a pathway for speeding up certain algorithms in the
quantum gate model, since they can more efficiently implement operations such as Toffoli gates, Quantum
Fourier Transforms, or GHZ state creation [56—59].

Realization of this model is not feasible using the common approach of applying a single bichromatic
tone. In principle, one might tune that tone very close to the COM mode such that it dominates over the
contributions from all other modes. In practice, this would place the system outside the far-detuned regime
and would generate significant unwanted spin-motion entanglement during the drive. Furthermore, in the
presence of any detuning from the COM mode, small (but non-zero) couplings to the remaining modes
combine to produce a final interaction graph which is only approximately (but not exactly) the desired
all-to-all Hamiltonian.

The all-to-all interaction graph can be simulated with perfect fidelity (Z = 0) if only the COM J*) matrix
contributes. This may be accomplished either by setting all weights ¢, except the COM to zero, or following
equation (11), by setting the COM weight ¢ to zero and equal weights ¢ # 0 for all other modes.
Experimentally, adding at least 2N + 1 frequency components to the global beams, as in [50], would allow
for the decoupling of ion motion from the applied spin interactions and thus enable implementation of these
desired mode weights {c;}.

The all-to-all interaction may be realized in both 1D ion chains or 2D crystals (figure 4(a)), since it
requires coupling to only the COM mode. Indeed, any ion geometry with a set of transverse motional modes
can support an exact all-to-all interaction, independent of geometry or ion number. This follows directly
from equation (3), where it can be seen that a COM mode (with mode vector ECOM ={1,1,...1}) is always

7
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Figure 5. Sample interacting 1D spin models achievable with small infidelity Z. (a) Ising-type interactions with power-law decay.
Solid lines: infidelity with optimized mode weights c. Dashed lines: single-beatnote method, same as in figure 3, shown here for
comparison. (b) Minimum infidelity for the ring graph for N vertices (ions), using a linear ion chain. For 4 ions, the model is
exactly realizable (Z = 0). Vertex relabeling (see section 3.4) has been applied to find the minimum infidelity for each N.

an eigenvector of the A;; matrix. The existence of this COM mode then permits implementation of an exact
all-to-all interaction following the approach outlined above.

3.2.2. Interacting dimer model

Another graph that can be simulated with perfect theoretical fidelity is a collection of non-interacting dimers
(figure 4(b), proof in appendix C). For 1D ion chains, this exactly realizable model scales to arbitrary chain
sizes, with an uncoupled ion at the center if N is odd. These dimerized interactions can be generated by
selectively driving the spatially symmetric normal modes, or alternatively (following equation (11)), by only
coupling to the anti-symmetric ones. In addition, this interaction graph for small N can be generated within
2D crystals, as shown in figure 4(b), right.

Since any linear combination of accessible interaction graphs is also accessible, combinations of the
all-to-all interaction with the interacting dimer model can generate novel connections between spins. For
instance, in [60], the authors produce a 4-ion ring graph by subtracting two interacting dimers from an
all-to-all coupling. Likewise, in [61], the technique of driving multiple modes is extended to 6- and 8-ion
systems to generate nearest-neighbor interactions on a sphere and a hypersphere, respectively. Such linear
combinations of exactly solvable models illustrate the flexibility of interactions which are accessible with
global beams.

3.2.3. Modified 2D lattices

For two-dimensional ion crystals, driving appropriate sets of transverse vibrational modes enables
modification of the native triangular-lattice geometry. For example, the interactions within the 7-ion crystals
shown in figure 4(c) may be engineered to yield a ring, two decoupled triangular plaquettes, or a ‘star’-like
central spin model. However, crystal symmetry plays an important role for exact realization of an interaction
graph; for general ion numbers, which contain many dislocations within the 2D lattice bulk [44], it is
unlikely that any choice of mode weights {c;} will yield a perfectly symmetric modified graph.

As in the one-dimensional case above, the ability to make new graphs by combining sets of other
accessible graphs allows for broadened applications. For example, adding the star graph to the ring graph in
figure 4(c) makes for a system where the central spin is highly frustrated and the ground state is highly
entangled. Alternatively, the combination of the 2D dimer graph from figure 4(b) and the trimer from
figure 4(c) is isomorphic to a 3D triangular prism graph, with a tunable ratio of intra-base to inter-base
coupling strengths.

3.3. Example applications: approximately realizable interaction graphs

In addition to the exactly realizable models outlined above, we also consider sets of interaction graphs for
which the infidelity Z is small but non-zero. For reference, we consider small infidelities to be less than or
equal to the typical 1%—4% infidelities present in most trapped-ion quantum simulations of long-range Ising
models driven with a single bichromatic tone [2]. We find that by coupling to multiple modes in parallel,
numerous interacting spin models may be realized with infidelities at the sub-1% level.

For example, we first revisit the Ising model with power-law interactions discussed in section 2.3 and
figure 3. Compared to the typical method of driving with a single bichromatic tone, utilizing multiple modes
reduces the infidelity by a factor of approximately 2—40, depending on ion number and interaction range «
(figure 5(a)). It will be shown in section 4 that this model’s fidelity can be further improved by engineering

8



10P Publishing New J. Phys. 26 (2024) 023033 A Kyprianidis et al

(a) (b)

Jij (norm.)
Z = 0.0005
} # Jexp,zj 1
™~ O ] - J@ Al B
§ H:f des, 7] § — 0.5
F:H::H: mi T —0

Ion 1 Ion 1

Figure 6. Sample interacting 2D spin models achievable with small infidelity Z. (a) Ising-type interactions with power-law decay
in a 2D crystal of N =19 ions, {wx, wy,w.} = 27 x {5,5,0.1} MHz, and interaction range o = 1.5. The calculated infidelity is
0.05%. Top: graph of Jexp. Bottom: the desired J4es and the experimentally achievable Je, matrix elements shown on the same
grid, in the lower and upper triangles (respectively). (b) Optimized nearest-neighbor graph and corresponding matrix elements
using the same 2D crystal as (a). The calculated infidelity is 0.8%.

anharmonic axial confining potentials for the ion crystal. Likewise, nearest-neighbor interactions with
periodic boundary conditions (i.e. ring graphs) can also be simulated with low infidelity. As introduced in
section 3.2.2, 1D ion chains can generate the nearest-neighbor ring graph exactly for N =4 using a linear
combination of all-to-all and dimer interactions. While exact solutions are no longer possible for N >4
using global beams, figure 5(b) demonstrates that the infidelity Z remains low for moderately sized chains.

Approximately realizable interaction graphs may be generated for 2D ion crystals as well. For a 2D ion
crystal, the Ising model with power-law decays may be implemented with <1% infidelity over a wide range
of ion number and interaction lengths when multiple modes are driven. Figure 6(a) shows the case of N =19
and a = 1.5, which is achievable with 0.05% infidelity. In addition, 2D crystals support the high-fidelity
realization of nearest-neighbor interactions, which are equivalent to a power-law decay model with o — 0.
Figure 6(b) shows an example targeting nearest-neighbor interactions in a triangular lattice of N = 19 ions,
which is achievable with an implementation infidelity of 0.8%.

3.4. Vertex relabeling

In general, the infidelity 7 of a desired interaction graph ] 4., may be reduced by relabeling its vertices such
that its physical properties are preserved, but it is better adapted to the structure of the ion crystal motional
modes. In graph theory language, an interaction matrix can be thought of as the negative of the Laplacian
matrix of a corresponding weighted graph [55], as long as its diagonal entries are chosen to null the sum of
each row and column. Each ion is a vertex, and each spin-spin coupling is an edge with a weight
corresponding to the strength of that interaction, including its sign. Changing the labels of the vertices does
not change the physical meaning of that interaction graph. However, this relabeled (‘isomorphic’) graph has
a different Laplacian matrix, and its best experimental approximation Jey, is different in general. It is
therefore advantageous to consider all possible isomorphic graphs with relabeled vertices so that the one with
highest fidelity may be selected for experimental implementation.

An example of such an advantage is shown in figure 7 for ring graphs with N =4 and N =5 ions. In each
case we begin with an intuitively drawn graph where vertex indices increase monotonically around the ring,
corresponding to the simple labeling of ions in a 1D chain from left to right. However, in both cases such
connection graphs are only poorly implementable using global beams, with infidelities 7 of ~20%.

9



10P Publishing New J. Phys. 26 (2024) 023033 A Kyprianidis et al

(a) (b)

2 4
1 2 1 2 1 3 1 3
4 3 3 4 5; ;4 5; ;2

Jij (norm.)
7= 0.246 7 =0.191 7 =0.005 1
exp 1
S _ '~
o g 0.5
o o
= Jdeb N7 =
Ton 1 Ton 1 0

Figure 7. Vertex relabeling can lead to significantly smaller infidelity Z. (a) For N =4 and (b) N = 5 ions, relabeling vertices leads
to a reduction of infidelity from ~20% to <1%. For each N, the initial choice of the desired graph and J 4. is shown at the left,
and at the right are the optimal ones after vertex relabeling.

Relabeling the vertices to better align with the underlying mode symmetries, as shown in figure 7, unlocks
the ability to implement these graphs with perfect or near-perfect fidelity.

Formally, vertex relabeling corresponds to the action of a permutation matrix P on the initial desired
matrix:

PlaesP” =T (17)

To find the optimal J},, the brute force approach is to apply all N! possible permutations P to the vertex
labels and choose the one that leads to the smallest implementation infidelity. Unfortunately this method
scales poorly, with approximately 4 million possible permutations for N = 10. While an efficient algorithm to
this end is beyond the scope of this paper, we suggest that computational speedups may yet be realized. For
instance, the symmetry of the ion motional modes dictates that a high-fidelity solution J} ; should be
symmetric across its anti-diagonal; permutations that strongly violate this condition should be discarded.
Applying this straightforward constraint significantly reduces the number of permutations which must be
tested before finding an optimal result.

4. Expanded set of interaction profiles using shaped potentials

In section 2.2 we showed that accessible interaction graphs are determined by the underlying mode
interaction matrices J®), which themselves arise due to the ions’ motional modes within the trap potential.
Most commonly, the potential along all three spatial axes is well approximated by a single quadratic
(harmonic) term. In this section we examine what might be gained by allowing the axial confinement to
contain anharmonic contributions to the potential, while keeping the transverse directions harmonically
confining. We focus on linear chains and investigate two axial anharmonic potentials as examples. In both
cases, the extra degrees of freedom gained by shaping the anharmonic terms allow for improved or expanded
quantum simulation capabilities using global beams.

4.1. Equispaced 1D ion chains
When a 1D ion chain is confined within a harmonic axial potential, the balance of Coulomb interactions and
the trapping fields leads to a clustering of ions near the center of the well. Here, we consider adding
higher-order terms to the potential such that the inter-ion spacings are as uniform as possible, as shown in
figure 8(a) [62]. Such equispaced ion chains have been investigated previously due to their potential
advantages for cooling, computation, and detection [23, 63—67].

Beyond these features, equispaced ion chains exhibit a fundamental property which makes them
advantageous for improved interaction-graph engineering: their transverse mode vectors Bj; are well
approximated by the sinusoidal functions

B ) 2Okl o GIZ D (K= (18)
N 2N

Figure 8(b) shows a comparison between the exact normal mode vectors Bj; of a 20-ion equispaced chain
and the sinusoidal-mode approximation of equation (18), with discrepancies at the level of ~1%. As will be
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Figure 8. (a) Anharmonic axial potential Vi, with @, = 27 X 0.1 MHz. For N = 20 ions, this potential leads to a uniform
spacing of ions (shown above). (b) The spectrum of transverse normal modes is modified by the anharmonic axial potential. Two

mode vectors by, (colored bars) are plotted overlaid with the sinusoidal approximation of equation (18) (dashed lines), showing
near-perfect agreement. The corresponding J*) matrices, displayed below, inherit the sinusoidal structure of the mode vectors.

demonstrated below (and proven in appendices C and D), systems with sinusoidal modes enable new types
of interaction graphs to be implemented with perfect theoretical fidelity, while also maintaining the exact
realization of all-to-all and dimer interactions introduced in section 3.2.

The result that equispaced ions lead to sinusoidal modes arises from the structure of the A;; matrix
(equation (3)) when |u; — uj| o< |i — j|. For equispaced chains, the dth-subdiagonal of the A;; matrix has a
constant value inversely proportional to d°, and the diagonal is approximately constant. This structure is
reminiscent of the scenario of a series of harmonic oscillators coupled with springs, providing an intuitive
explanation for the sinusoidal form of the eigenvectors in (18). In the limit N — oo, the diagonal is exactly
constant and the A;; matrix takes on an infinite Toeplitz form which is known to have sinusoidal eigenvectors
[68]. (The observation that equispaced ion chains exhibit sinusoidal modes in the N — oo limit was also
highlighted in reference [62]). We note that these results are not applicable for the central ions of a
harmonically confined chain, which have often been used as a proxy when equal spacing is desired; true
anharmonic confinement is required to obtain the mode vector properties discussed above.

In both the finite and infinite limits, equispaced ion chains can support the same exactly realizable
interaction graphs as discussed for harmonic axial confinement in section 3. Two shared properties between
the harmonic and anharmonic potentials lead to this result. First, the highest-frequency transverse mode in
both cases is an equal-amplitude COM motion; this guarantees that equispaced chains can admit all-to-all
spin-spin interactions with theoretically perfect fidelity. Second, the modes of both harmonically confined
and equispaced chains alternate between spatially symmetric and anti-symmetric; equal coupling to all
modes with a given parity then produces the same dimer-type interactions as in section 3.2.2.

Beyond these examples, equispaced ion chains open the possibility to realize additional interaction
graphs with near-perfect or exactly perfect fidelities in the finite and infinite-ion limits, respectively. For
example, figure 9(a) shows the infidelity for realizing a nearest-neighbor spin-spin interaction within a 1D
chain of equispaced ions. Interestingly, the theoretical fidelity of implementing this spin model improves for
large system sizes. This is a consequence of the underlying mode structure: perfectly-nearest-neighbor
interactions can be generated by sinusoidal modes (as proven in appendix D), which are better and better
approximated by the ion chain modes in the large-N limit.

Once more, we revisit the Ising model with power-law interactions and compare the performance of an
equispaced chain to the standard approach first highlighted in figure 3. When combining shaped potentials
with the multi-mode driving methods of section 3, we find that the infidelity of power-law Ising interactions
may be reduced by one to two orders of magnitude compared to the single bichromatic tone method
(figure 9(b)). In addition, unlike the single-tone approach, we observe that power-law interactions which
decay faster than ~1/7° are accessible with low infidelity using anharmonic potentials. Such improved
flexibility would allow the study of, for instance, interacting dipolar and van der Waals systems [69—71]
which were previously inaccessible to trapped-ion simulators with global beams.

While an exhaustive list of spin models realizable with high fidelity using equispaced ions is beyond the
scope of this section, we conclude with three additional examples in figure 9(c). First, we reconsider the ring
topology introduced in figure 5(b). Utilizing the modes of an equispaced ion chain again yields over an
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Figure 9. Infidelity of interaction models for equispaced 1D chains, using transverse motional modes and a trapping potential as
in figure 8. (a) Infidelity of the nearest-neighbor model as a function of system size. (b) Solid lines: Power-law model infidelity for
various system sizes as a function of interaction range o. Compared to the single-beatnote method (dashed lines), equispaced
chains yield a smaller infidelity by at least an order of magnitude. (c) Infidelity of the ring graph, the two-leg rectangular ladder,
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Figure 10. (a) Double-well axial potential V,, with a confining (positive) quartic term and an anti-confining (negative)
quadratic term. For sufficiently large central barrier, the ion chain is split into two approximately decoupled groups. (b) At this
limit of large separation between the left and right ion groups, the spectrum of transverse normal modes features N/2 pairs of
modes. Each near-degenerate pair consists of an even-symmetric mode and its odd-symmetric sibling, which contains opposite
signs of ion participation amplitudes in the left and right halves of the chain. Driving both pairs results in a near-perfect
decoupling of interactions between the wells.

order-of-magnitude reduction in the infidelity, with 7 < 0.004 for any number of ions. Next, we show
comparably low infidelities for a spin-ladder geometry which replicates a 2D lattice using a 1D equispaced
ion chain. (We note that perfect theoretical fidelity may be achieved following the method of [38], where an
uncoupled ‘spacer’ ion is placed at the center of the chain). Finally, low infidelities may be realized for the
anisotropic next-nearest neighbor Ising (ANNNI) model [72], which is known to exhibit complex phase
diagrams and large frustration due to competing nearest- and next-nearest-neighbor interactions.

4.2. Double-well potentials

To further illustrate how anharmonic axial potentials may enable new interaction graphs, we consider the
case of a double-well potential (figure 10(a)). In this configuration, which may be engineered by applying
positive voltages to a central set of electrodes, the chain separates into two sets of ions with large Coulomb
interactions within each well and small Coulomb interactions across wells. Here we consider a double well
created by combining a confining quartic term with an anti-confining quadratic term, though generic
implementations featuring a central ‘bulge’ will show the same qualitative features.

In double-well potentials, the transverse modes of the chain lead to a nearly-perfect decoupling of
interactions across the central barrier. For N ions, the transverse mode spectrum contains N/2 pairs of
frequencies, each of which is approximately degenerate (figure 10(b)), with perfect degeneracy reached in the
limit of infinitely separated wells. For the experimentally feasible configuration shown in figure 10, the
frequency separation between mode pairs is calculated to be 40 Hz for the COM mode, and <1 Hz for the
zig—zag mode. At each frequency, one of the near-degenerate mode eigenvectors exhibits in-phase motion
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between ions in separate wells while the other exhibits out-of-phase motion between the wells. Since the
modes appear in pairs, any driving laser tone will couple near-equally to both the in-phase and out-of-phase
motions. The result is a block-diagonal interaction matrix, where inter-well interactions are canceled and
intra-well interactions are dictated by the local mode structure.

For double-well potentials, illuminating the whole chain with the same beam generates the same
quantum dynamics for two identical sets of effective spins. Parallel wavefunction evolution (using local
addressing) has already found utility in measurements of the second-order Rényi entropy to quantify
bipartite entanglement in many-body systems [73, 74]; here, the state preparation could be performed
exclusively using global beams. More generally, if the separately evolving wavefunctions in both wells are later
brought together by reducing or eliminating the central barrier, they may be used to simulate complex
systems in materials science and chemistry. For instance, strong local interactions (within each well) followed
by relatively weaker interactions between wells takes the form of a Matrix Product State, which has been used
in condensed matter physics to describe 1D systems with limited entanglement as well as quasi-2D systems
[75, 76]. Furthermore, such setups of weak interactions between strongly coupled 1D systems closely replicate
the behavior of chemical nuclear dynamics with multiple interacting nuclear degrees of freedom [77, 78],
allowing for extensions to the 1D chemical dynamics simulations already performed with trapped ions [11].

5. Discussion and outlook

In this work, we have described a variety of interaction graphs which are implementable with global beams
and have analyzed their maximum possible theoretical performance via the infidelity metric Z. This
approach abstracts away from common sources of experimental noise, such as trapped-ion heating or
photon scattering, which limit the performance of trapped-ion quantum gates [6, 15]. Thus the total
infidelity of implementing the spin-spin interactions described above will depend on both the theoretical
minimum infidelity Z, as well as the experimental errors specific to each apparatus.

Nevertheless, we highlight two experimental considerations of primary importance for reducing errors
during quantum simulations with engineered interaction graphs. First, as described in section 3, successful
interaction engineering relies upon an appropriately weighted sum of J¥) matrices, each with weight c.
Following the methods in [50, 54], arbitrary weights may be generated via the application of 2N + 1
bichromatic beatnotes yi,,, each with their own Rabi frequency §2,,. Practically, this may be accomplished by
using an arbitrary waveform generator to imprint multiple tones on laser light passing through an
acousto-optic modulator. However, this suggests that motional-mode frequency drifts (due to drifts in the rf
voltage and/or frequency, for instance), or laser intensity fluctuations (due to power fluctuations or pointing
instability), will have outsized effects in limiting the experimental fidelity. These effects may be reduced by
frequently measuring the trap COM frequency and recalculating the remaining modes, and by applying
straightforward mitigation strategies of rf [79] and laser stabilization. In addition, we note that even more
bichromatic beatnotes may be added to reduce the sensitivity of mode weights to frequency and intensity
fluctuations. In [80], for instance, the authors demonstrate that additional beatnotes may be used to reduce
the infidelity of a standard Melmer-Serensen gate by nearly an order of magnitude in the presence of ~5%
amplitude and mode frequency errors. Finally, as discussed in [50], the maximum spin-spin coupling rate is
proportional to the COM frequency; this implies that gate errors due to ion heating will be larger in systems
with low secular frequency.

Second, as described in section 4, utilizing strings of equispaced ions further improves or expands upon
the quantum simulation possibilities achievable with global beams compared to the harmonic case. However,
following the analysis presented in [62], perfectly equispaced ion chains are idealized since they require
control over an infinite number of anharmonic potential terms. Motivated by prior work such as [63], which
achieve nearly equispaced chains by controlling only the second and fourth order terms in the axial potential,
we quantify the infidelity arising from practical trapping electrode configurations. Figure 11 considers the
infidelity Z of realizing nearest-neighbor interactions in a 1D chain of N ions, when only terms up to
polynomial order .,y are used to shape the axial potential (equation (1)). We find that only the first few
potential orders are required to keep the infidelity at or below the 1% level, even for large system sizes, and
remark that a symmetric potential of order 7,,,,x may be implemented within an ion trap using #yay/2 sets of
symmetric dc electrodes. As before, care must be taken to limit fluctuations of the trap potentials, since these
will directly lead to experimental infidelities through fluctuations of the ion spacings and normal mode
frequencies.

Future theoretical directions include mapping even more spin interaction topologies to accessible graphs
in ion trap simulators, and generalizing the accessibility criterion in equation (14) to non-harmonically
confined modes. Furthermore, exploring the possibilities, limitations, and efficient algorithms of the graph
vertex relabeling introduced in section 3.4 will shed light on the degree to which accessible graphs may be

13



10P Publishing New J. Phys. 26 (2024) 023033 A Kyprianidis et al

0.05
t\] nmax
I= 0.01 u>2
% W4
g [ 5
= ms
— 0.001 10

0 10 20 30 40 50 60 70
System size N
Figure 11. Infidelity of realizing the nearest-neighbor model in a 1D chain of N ions, confined in an axial potential with terms up
to polynomial order nmax (equation (1)). Shaping the anharmonic confinement with more degrees of freedom leads to lower

infidelity. For all ion numbers N < 70, infidelities of Z < 0.01 are achievable using potentials with #m,x = 6 (requiring 3 sets of
independently controlled dc electrodes).

discovered using this pre-processing stage. Finally, throughout most of this work, driving fields were
considered to couple to the normal modes transverse to the ion chain axis or 2D crystal plane. There may be
cases for which the axial modes provide a different and advantageous basis set for tailoring the desired Jges,
though this remains an open question.

We have presented a suite of techniques for expanding the reach of quantum simulations using
exclusively global beams. We have shown that by driving all available vibrational modes with appropriate
weights, previously inaccessible spin—spin coupling graphs become implementable in trapped-ion simulators
with perfect or near-perfect fidelity. We developed a simple but rigorous test to determine whether a desired
interaction profile may be perfectly mapped to a trapped-ion system given its set of vibrational normal
modes. Additionally, we showed that further high-fidelity classes of spin—spin interactions become achievable
by considering shaped anharmonic axial potentials. Taken together, these tools make a wide range of new
problems in materials science and chemistry accessible to ion-trap quantum simulators, while avoiding the
experimental overhead and complexity associated with locally addressed entangling interactions.
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Appendix A. Proof of equation (11)

The N x N mode vector matrix B is the modal matrix of A, which is real and symmetric. As such, B is
orthonormal. One of its properties is then

BBT =B'B=1. (19)
or

(BBT)..

i = i (20)

We re-write this as,
(BB"), = 32 B (B7), = 3 Bubi
k k
and using (8) this becomes:
(B87), = S = 6y~ S
k k
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or in matrix form

Z](k) -1
k

Appendix B. Proof of equation (14) for harmonic confinement

In this section we provide the proof for equation (14). Let us assume that a desired interaction matrix Jges
can be decomposed as a linear combination of JIOR

]des:ZCk](k), aeR (21)
k

& Jdes,i = Z ckBixBjk (22)
k

S Jdes,ij = Z ckBj (B) K (23)

k
& Jaesij = > _ > _BCu (BT)ZJ- (24)
PR

where C is a diagonal matrix with the weights ¢ in its diagonal:
C=diag({ct}). (25)
In matrix form, (21) reads
Jaes = BCB" < B"J4e,B = C. (26)

We note that with the convention that J4s is provided as input in the graph Laplacian form, i.e. with its
diagonal chosen to zero the sum of each row and column, the set of {¢;} in the relations above is unique, and
the COM mode’s weight is always zero: ccom = 0. However, the diagonal of an interaction matrix bears no
physical significance. This provides the experimental flexibility, after a set of mode weights {¢} has been
found, to add a constant to all of them, without changing the physical interaction matrix, such that for
example the COM mode’s role is diminished, since it is especially prone to ion heating.

Appendix C. Accessibility of the dimer model

We start by showing that the dimer model is accessible for sinusoidal transverse modes given by
equation (18), for even numbers of ions N:

B =4/ 2—1\?1@1 cos (2]_1)2(Nk_1)ﬁ. (27)

The mode interaction matrices then take the form

in  2—0 2i—1)(k—1 2i—1)(k—1
josn _ 2=t (G- Dk=Ux (G- k=Dn 08)
N 2N 2N

We will show that coupling equally to every other mode results in the pair-wise interaction model shown
in figure 4(b). To this end, we will calculate the sum of the mode interaction matrices, assuming N is even for
simplicity

T=7® 4 450 4 (29)
which is

W RimD k=17 (=1 (k=D

30
2N 2N (30)

(=]
I
Z| e
] =

T
Z N
=
— o

2i—Dkr  (2j—1)kn
. 1
cos N cos N (31)

eARS
-
I
“w
o
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Using the product-of-cosines identity,

132 kr km
J]:NZcosﬁ(i+jfl)+cosﬁ(ifj). (32)
k odd
We will now use the identity
- sin2na
Zcos(Zm—l)a: —, a#imlel, (33)
o 2sina
re-written as
N—1 .
N
Z coskazsm, a’ a#tlr,lel (34)
2sina
k=1,0dd

for each of the two terms inside the summation in (32), with a — 7 (i +j — 1) /N for the first term and

a — m(i—j)/N for the second term. We note that the only values of i, € [1,N] that these a’s can be equal to
In, 1 € Z, are for | =1 and I = 0 respectively. So, the values of i, j for which the identity (33) does not apply are
i+j—1=N=j=N-—i+1landi—j=0=j =i Forall i,j except for these values, we have

J“:i sin7 (i+j—1) +l sin (i — ) 0 (35)
7N osin ZUH=D N 25in =02 .
N i+j—1#IT N i—jFElm

For the mentioned values of i,j where identity (33) does not hold, we have

e j = N—i+1 (i.e. the anti-diagonal of J)

1
Jijli=n—it1= N Z cosk£0+cosk% (2i—N—-1) (36)

(37)

_ 1[N = sin[r(2i-N—1)]
_N[2+Zsin7r/N(2i—N—1) '

For even N, there are no values of i that zero the sine in the denominator, and we can replace it with zero
since its numerator is an integer multiple of 7 Vi, N:

1
Jijli=n—it1= 3 (38)
e j=1i (i.e. the diagonal of J)
N—-1
1 k k
Jiili=i = N E cos§(2i71)+cos§0 (39)
k odd ——
=1
1 i 2i—1 N
_ | sinm@i-1) | N} (40)
N |2sinmt/N(2i—1) 2

For even N, there is no value of i € [1,N] that zeroes the sine in the denominator. Therefore, similar as before,
that term is always zero, and we can write

1
Jijb:i:i' (41)

In combination, (35), (38), and (41) show that J is a sparse matrix with values of 1/2 in its diagonal and
anti-diagonal, which is the matrix representation of the interacting dimers model.
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C.1. Accessibility of the dimer model for modes of a harmonically confined chain
The normal mode vectors for any trapping potential form an orthonormal basis for the real vector space of

1 x N real vectors. This guarantees that each mode vector by = Bi,i=1,...,Nofa harmonically confined
chain can be written as a linear combination of sinusoidal mode vectors b;:

N N
Bi=Y cuBi ,cu= Y BuBi=ck (42)
=1 i=1

For both harmonic and equispaced-ion potentials, the normal modes alternate between spatially
symmetric and anti-symmetric ones. ‘Harmonically confined” symmetric modes will only contain symmetric
sinusoidal modes in their decomposition; similarly for anti-symmetric modes. Because of this, we can
re-write equation (42) e.g. for the even modes k = 2x:

N/2
Biow = ZCZH,ZABLZ/\- (43)
"

We first derive a relation that will prove useful for this section:

N/2
ZCZN,ZXCZH,Z/\ =0\ (44)

k=1

To start, we note that the real matrix C with entries ¢y transforms an orthonormal basis to another,
therefore C is orthogonal:

cct=1 (45)
N
= chlckl’ = 0p,1/ (46)
k=1
N/2 N/2
= Zczn,lfzn,l' + ZCZK—I,ICZK—I,I’ =01 (47)
K=1 k=1
N/2
for =2\ even = ZCm,z/\Czn,zA’ =025 (48)
r=1

as desired.
We are now ready to derive the sum of all even-k mode interaction matrices for harmonically confined
ions:

F=JO 4 4O 4 (49)
whose entries are
N/2
EDI (50)
k=1
N/2
= ZBi,ZHBj,Zn (51)
k=1
N/2 [N/2 N/2
= Z ZCZK,Z)\Bi,Z/\ Z Cor2n' Bjaxs (52)
k=1 \ A\=1 A=1
N/2 N/2
= Z BiaxBioa: 2625,2)\(:211,2)\/ (53)
AN/ =1 k=1

=0y, from equation (48)
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N/2

= ZBi,z/\B‘,z,\ (54)
=1

=J. (55)

We showed that the sum J for modes of a harmonically confined chain is equal to the sum J for sinusoidal
modes of the previous section. In fact, this result holds not only for harmonically confined chains, but also
for any set of normal modes that satisfy equation (43).

Appendix D. Accessibility of the nearest-neighbor model for sinusoidal transverse
modes

The transverse modes for equispaced chains of size N are well approximated by

2— 2i—1 —1
Bjp =1/ Ok cos( j— 1) (k )77. (56)
N 2N

Here we show that the mode weights

(k—1)m

=1,...
N k=1,...,N (57)

cr = 2cos
result to a nearest-neighbor model as long as the mode vectors are as in (56). The mode interaction matrices
now take the form
](k),sin 2— 0k Qi-1)(k—1)7 2j—-1) (k=17
ij

= cos cos (58)
N 2N 2N

and the proposed mode weights lead to the interaction matrix

N
I=3 aer (59)
k=1
N ) )
4—26 k—1 2i—1)(k—1 2j—1)(k—1
:Z k’lcos( )Wcos( i— I )ﬂcos(] )( ) (60)
P N N 2N 2N
N—1 ) .
4-26 k 2i— 1)k 2j— 1)k
= ﬂcosicos( i—1) Wcos(J ) km (61)
P N N 2N 2N
N—1 . )
2 4 2km (2i—1)kr  (2j—1)krm
_2 4 2
N + Nz:;cos N cos N cos N (62)
N—1 . ) . )
2 4 2i—3)k 2j—1)k 2i+1)k 2j— 1)k
=— 4+ — cos(l )ﬂ-cos(] )7T—|—cos(1+ )Wcos(] )W. (63)
N Nk:1 2N 2N 2N 2N
Using the cosine—cosine product trigonometric identity twice:
2 1] k(i+j)n k(i—j+1)m
Ji= NN kz_; [cos —N  tes—— g (64)
K(l—iti k(iti_n
+cos ( 1i]+])7r + cos (14‘1\]7 )W} . (65)

Now we use Lagrange’s trigonometric identity for each of the 4 sums in (65). We will explicitly replace the
first term, and use °...” for the other three for now

> 1] 1 sin [(2N+ 1) %}
Ji==+ —— —cos(i+j)m+ — (66)
' N N| 2 2sin [%}
L2 a0 i1/ N) ()]
=R | s T e (7
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2 1 1 . 1 L. 1
= N+N [2 —cos(i+j)m +E (1= 6itjon) cos(i+j)m +55i+j72N(2N+ 1)+...]
2 1 1 1 L 1 .
:N+N —E—Ecos(z—l—])ﬂ+§(5,-+j,2N(2N+1—cos(1+])7r)+... . (68)

The first cosine term, plus the rest three homologous terms at the *..." part of the sum add to zero for all
integers i,j. Also, the terms involving the Kronecker delta are the values of ,j for which the denominator with
the sine at (67) equals zero. After some algebra, we can write

2 1
Jij= =+ == [-4 42N (itjon+ 6imjt1,0 + 0—itjs1,0 + Oitj—20) | (69)
N 2N
or equivalently
Jij = ipjon +0ij2 +6iji1 +0imj 1 (70)
which is the nearest-neighbor matrix, with two inconsequential nonzero diagonal entries: J; ; and Jyn.
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