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Abstract

This thesis describes the design and construction of two laser systems to probe the
674nm transition of ®8Sr* ions in a linear Paul trap. The first laser system made use
of a molecular transition in Iodine to stabilize the length of a Fabry-Perot cavity for
laser locking. After constructing this laser, we measured an unsuitable experimental
stability of 10 MHz over 5 minutes. A completely new monolithic laser system was
built, providing better environmental isolation and a frequency stability of at least
1 MHz over 5 minutes. Using this laser, we were able to observe depletion and
quantum jump effects in our ion trap system. Additionally, by scanning the red
laser frequency, we were able to see the blue-laser broadened spectrum of the 674nm
transition. Fitting the spectrum to a Voigt function yielded an ion temperature of 35
mK. To avoid blue-broadening, we set up blue and red laser pulse sequences. This
allowed us to observe a red spectrum with secular sidebands and calculate an ion
temperature of 6.8733 mK.
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Chapter 1

Introduction

1.1 Background

Atomic ion traps exemplify an experimental elegance that is difficult to surpass. They
permit physicists to study and control ions with exceptional precision to gain insight
into the quantum world. Ton traps come in many flavors and sizes [1, 2], and have
been used to perform various experiments in a wide range of subfields.

This thesis is concerned with trapping ®8Sr* in a linear Paul ion trap. Owing to
the electronic level structure of strontium, blue and infrared (IR) lasers are required
to trap, cool, and image the ion. Unfortunately, after the trapping has succeeded,
there is little further science that can be performed with these two lasers alone.

We can now ask what types of experiments become accessible if we introduce a
third laser to address the 674nm red transition in ®8Sr*. One can group the possi-
ble experiments roughly into three classes: quantum phenomena, ion probing, and
quantum information. Experiments in the first category, such as depletion, quantum
jumps, and the quantum Zeno effect, are able to test and verify the fundamentals of
quantum theory. The second type of experiments, such as temperature measurements
and sideband cooling, use the red laser as a probe to determine and affect properties
of the ions and ion trap system. The third class of experiments investigates how
information can be stored and manipulated using trapped ions. This thesis will focus

on the depletion, quantum jump, and temperature measurement experiments.
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1.2 Overview

Before presenting the experiments in detail, a suitable background must first be es-
tablished. Chapter 2 presents a broad overview of the ion trapping process. Sections
2.1-2.3 detail the geometry and mathematics pertaining to the trap used in our stron-
tium experiments. Section 2.4 describes the finer points of trap operation, including
construction of the vacuum system, producing and detecting ions, and correcting for
any stray fields in the trap.

Chapter 3 presents the structure of the strontium ion and the theory behind
depletion, quantum jumps, and temperature measurements. In this chapter, one
can find calculations and predictions showing the data we expect to see when the
experiments are run.

Chapter 4 describes a first attempt at building a laser with sufficient frequency
stability to observe the desired effects. Section 4.1 provides a theoretical background
of the important optical components used in constructing the setup. Section 4.2
presents the design for a dual-laser system, and Section 4.3 describes its construction.
Stability results are presented in Section 4.4.

Chapter 5 details the design and construction of a more stable laser than the
one described in Chapter 4. The important differences and expected performance
improvements are highlighted throughout the chapter. Section 5.3 gives the stability
measurements of this new red laser.

Chapter 6 presents experimental results. Using the laser constructed in Chapter
5, we show our depletion, quantum jump, and temperature measurement data. Ad-
ditionally, we describe the setup of each experiment and compare the results to the

theoretical predictions made in Chapter 3.

1.3 Contributions to this work

This work was performed in Prof. Isaac Chuang’s laboratory at the MIT Center

for Bits and Atoms. This project is part of an ongoing, long-term effort to realize
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large-scale quantum computation in ion traps.

Robert Clark, Jaroslaw Labaziewicz, and Kenneth Brown all assisted me in con-
structing the laser system introduced in Chapter 4. Several of the electronic compo-
nents necessary to operate the laser were built by Clark, and Labaziewicz designed
the software and hardware used for stabilizing the laser via electronic feedback. I fab-
ricated the electronic feedback circuits designed by Labaziewicz, built and stabilized
two external cavity diode lasers, and set up various locking and optical breadboard
schemes. For each setup, I measured the stability to determine if it would be sufficient
for our experiments (see Sec. 4.4).

The design and construction of the monolithic laser described in Chapter 5 was
spearheaded by Labaziewicz. The idea was inspired by a setup employed by Prof.
Kazuhiro Hayasaka of the Kansai Advanced Research Center in Japan. Labaziewicz
and Chuang developed software to interface with an FPGA chip and lock the laser.
I aided in the monolaser construction and testing process by building the ECDL and
optics and performing some simple debugging.

The linear Paul trap used in these experiments was designed and fabricated in
Japan by Prof. Shinji Urabe’s group at Osaka University. Brown designed much of
the vacuum chamber mounting system, and Labaziewicz was primarily responsible
for cleaning and installing the trap.

While Labaziewicz was refining the monolaser design, Clark taught me the ion
trapping process. From then on, Brown and I typically worked together to trap ions
for experimentation. Using the monolaser, Brown, Labaziewicz, and I were able to

collect the experimental data presented in Chapter 6.
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Chapter 2
Ion Trapping

Ion traps have proven themselves to be an important tool for research in experimen-
tal atomic physics. Since their development, ion traps have allowed researchers to
make very precise spectroscopic measurements [3, 4, 5], perform fundamental tests of
quantum theory [6, 7, 8], and determine the masses of various atoms and molecules to
very high accuracy [9, 10]. Additionally, several groups have demonstrated quantum
information processing and have implemented quantum algorithms on small numbers
of ions [11, 12], providing a promising avenue for large-scale quantum computation.

There exist several different mechanisms for trapping ions. In general, charged
particles may be trapped by electric and magnetic fields. However, as was first shown
by Samuel Earnshaw [13], static electric or magnetic fields alone cannot provide con-
finement in three dimensional space. This arises directly from Laplace’s equation,
V2V = 0. For any local minimum, the potential in the surrounding region would be
harmonic for small displacements: V' = az? + by* + cz?. Taking V?(az?® + by? + cz?)
gives a + b+ ¢ = 0, implying that the potential cannot be simultaneously attractive
(or repulsive) in all 3 directions.

In 1936, Penning proposed a way to circumvent this restriction by designing a trap
with superposed electric and magnetic fields [14]. Two decades later, Wolfgang Paul
presented an alternative approach involving oscillating electric potentials to confine
the ions [15, 16, 17]. Since the work in this thesis was performed exclusively in a Paul

trap, we will now examine the theoretical foundations and operation of such traps.
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2.1 The Linear Quadrupole Paul Trap

Paul traps use radio-frequency (rf) fields to create a quadrupolar trapping potential.
In his original paper, Paul presented a geometry involving a ring and two endcaps to
generate a stable trapping point at the center of the ring. Since Paul’s initial design,
various new geometries for trapping ions with rf fields have been suggested, including
the linear quadrupole trap [18, 19]. This design is comprised of four rods; two provide
the rf voltage, while the other two are grounded (see Fig. 2.1). Segments on the ends
of the rods may be biased to provide axial confinement. As opposed to the original
Paul traps that contained only one stable point, linear Paul traps provide a line of
stable points along the central axis, permitting a chain of ions to be trapped and

cooled.

O
N

V,cos(Q 1)+ U,

(W]

Figure 2-1: Schematic of the linear Paul trap. Left: end view of the trap. Two
opposing rods carry a potential V' = Uy + Vj cos(Qrt), where V; is the zero to peak
amplitude of the rf voltage and U, is a DC bias. The other pair of rods are held
at ground. Note also the coordinate system: # and y point radially, while 2 points
axially. Right: three-dimensional view of the trap. The outer segments of the rods
(endcaps) are held at positive DC voltage.

To generate a purely quadrupolar field along the central trap axis, it is necessary
for the four rods to be shaped like hyperbolas. Fortunately, calculation shows that
alternate geometries, such as round or knife-edged rods, can produce quadrupolar
fields to very good approximation [20]. As a result, most modern traps use these
constructions due to ease of fabrication and lower costs.

The positive, static voltage applied to the endcaps prevents the ions from leaking

out of the trap axially. Let us now consider the behavior of the potential in the radial

20



direction only. The most general quadrupolar potential can be written:
®,, = A(\2? + oy?) (2.1)
Substitution into Laplace’s equation gives:

VAN +0y®)] = 0 (2.2)

Ao =0 (2.3)

As we expect, if the potential is attractive along z, it is repulsive along 3 (and vice
versa). The potential forms a saddle point along the center of the x —y plane. Clearly,
ions will escape along the y direction after a short time. However, as we will see, the
ions can be confined if we rotate the potential at some frequency €2p. Including the

possibility of a DC bias Uy, we may write the radial potential as:

2 2

(U + Vi cos(Qrt)) 1+ :”r;ﬂ (2.4)
0

CI)%y(t) =

N | —

where Vj is the zero-to-peak amplitude of the rf potential and 7 is the distance from

the center of the trap to the rods. This potential is plotted in Fig. 2.2.

Potential at t=0 Potential at t=T/2
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Figure 2-2: The radial potential at two points in time, with Uy = 0. Left: at t = 0,
the potential is attractive in 2 and repulsive in y. Right: after half a period, the
situation has reversed, and the potential is now attractive in g.
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Armed with this potential, we can now examine the behavior of ions in the linear
quadrupole trap. We will first solve the complete problem of a charged particle
moving in this potential, from which we can calculate the stability criteria for the
trap. We will then make some approximations which allow us to gain intuition about

ion motion.

2.2 Full Solution: The Mathieu Equation

Given our expression for the potential (Eq. 2.4), we may calculate the equation of
motion for an ion. Since there are no cross terms (e.g. xy) in the potential, the
motion in x and y can be solved independently. Due to the symmetry in the setup
(A = —0), solutions for z and y should have the same magnitude, but with opposite

signs. If we solve the system in the x direction for an ion with mass m and charge @,

F, =mi=—-QVd,(t) (2.5)
where
1 x?
o, (t) = 5 (Ug + Vocos(Qrt)) [ 1+ 2 (2.6)
0
Taking the gradient,
Q
mi + Q (Uo i %T(;OS( Tt)) = 0 (2.7)
0
d?*z QUy  QVycos(Qrt)
—_— =0 2.8
dt? (mr% + mrd . (2.8)

At this point, we can change variables to make the equation dimensionless. Let us

make the following definitions (the reasoning will soon become clear):

Ot 1QU 2QVs
_ Ot _ __ 2.
=% @S oag BT a0 (2.9)
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If we were to repeat this process along along the y direction, we would find that

a, = —a, and g, = —q,. Substituting the scaled x variables into Eq. 2.8 gives:
x4 (QUy QVjcos(2)
— 4+ = =0 2.10
de? * Q2 (mr% * mrd v (2.10)
T (0= 2052 = 0 2.11)
— © — 2q; COS = )
P a q x

Eq. 2.11 is the exact canonical form of the Mathieu equation [21], whose solutions
are well known. Since the physical goal is to trap ions, we seek stable solutions to the
equation of motion (i.e. solutions bounded for all ¢). As demonstrated by Floquet

[22], a complete solution to the Mathieu equation can be written:

z(€) = Ae"*$(§) + Be " (—¢) (2.12)

where A and B are constants of integration, p is a complex constant, and ¢ is a
function with period 7 [23]. Since ¢ is periodic, we can expand Eq. 2.12 using

Fourier’s theorem:

o0 oo

z(&) = Aer Z Cyne®™ 4 Be M Z Cope™ 21 (2.13)

n=—o0 n=—o0

where the C5,’s represent the amplitude of each term in the Fourier series. With the
periodicity of the solution now explicit, we can turn our attention to the e#¢ and e=#¢
factors that appear in Eq. 2.13. Since p is complex, it may be rewritten pu = o + 3.
We notice immediately that if p has any real component (o # 0), the trajectory is
unstable since e#¢ or e #¢ goes to infinity as ¢ increases. Imposing this condition, the

solution becomes:

2() =AY e 4 B Y Cypem D (2.14)

n=—oo n=—oo
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Applying Euler’s formula (¢ = cosf + isin ),

2(€) =AY Cycoslé(2n+p)| + B Y Co,sinf¢(2n + B)] (2.15)
with A’ = (A+B) and B’ = i(A—B). Given Eq. 2.15, the value of § alone determines
the stability of a trajectory [24]. If § is an integer, the solutions - called Mathieu
functions of integral order - will be periodic but unstable. If 3 is a non-integer, then
the solution x(§) will be periodic and bounded; these are the stable solutions we
desire.

We can now substitute the solution Eq. 2.15 into the original Mathieu differential
equation (2.11) and solve for values of a, and g, that provide stable ion trajectories.
This process is detailed thoroughly by N. McLachlan [25]. From these calculations,
one can divide the a — ¢ plane into regions of stability and instability. For certain
values (g,a), the trajectory in the z direction will be periodic and bounded. If we
then repeat the process along ¢ and combine the results, we will find regions in a — ¢

space where the ions are confined in both directions simultaneously (see Fig. 2.3).

Mathieu Stability Regions Mathieu Stability Regions

x-stable
15F 15F X-stable
Unstable
1 Unstable 1
Bar x-stable V51 x-stable
w 0 B @ 0
DS\ a5l y-stable
M Unstable i . Unstable
rer 15T yestable
5 . ‘ 5 . )
0 05 1 14 u] 05 1 15
q q

Figure 2-3: Mathieu stability regions in the a — ¢ plane. Left: Stability region along
the x-direction (light grey). Right: Stability region along Z or y only (light grey),
and in both dimensions (dark grey).

Tons will be effectively trapped if (g,a) lies within the dark grey diamond in Fig.
2.3 (right). Recalling the definitions presented in Eq. 2.9, we can now determine the
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values of Uy, Vo, and Qr that will give a stable trap (all other factors are physical
constants or geometrical measurements). Consider, as was typically done in this
thesis, the case of no DC bias on the rf rods (Uy = 0). Calculation shows that the

maximum stable ¢ value is .908 [25]. Recalling the definition of ¢, we find

2QVo

2002
mr§€ls

< .908 (2.16)

Assuming a ®Sr* ion in a trap with ry = .6mm,

QLST <15x1078 V. s (2.17)
From Eq. 2.17, we find a relation between V[ and €27 that determines the stability of
the trap. Typical trapping values used in this thesis were V5 = 320 V and Qr /27 =
17.5 MHz, giving a stable ¢ of .16.

We have now solved the problem of trapping ions using only electric fields. By
appropriately choosing the free parameters Uy, V), and Q7 (and hence a and ¢), one
can determine whether or not the arrangement will be stable. Unfortunately, Eq.
2.15 is somewhat complex, making it difficult to gain intuition about ion behavior in

the trap. By applying some approximations to the system, however, we may develop

insight into ion dynamics.

2.3 The Secular Approximation

Let us begin by qualitatively understanding the interaction between a trapped ion
and the surrounding electric fields. By construction, there is a trapping potential
oscillating at Q. This oscillation can send ions into forced vibration with drive fre-
quency 7 and some small amplitude. At slower time scales, the ions effectively “see”
a harmonic potential in all directions. Analogously to classical simple harmonic oscil-
lators, we expect the ion to undergo harmonic motion at some secular frequency wse...
The total motion is given by the sum of the fast, driven motion (called micromotion)

at frequency €27 and the slow, secular motion at frequency wge.
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As before, with no bias on the rf rods, we begin by writing the equations of motion

for x and y:

z —T
= Q—Vg cos(Qrt) (2.18)
y mrg Y

We qualitatively saw that the total ion motion was comprised of secular motion and

micromotion. If we let © = 4. + 7, and y = Ysee + Yy,

Tsec + xu Q% —TLsec — xu

=2 Qrt
2 cos(Qrt)

(2.19)

ysec + y,u Ysec T Yu

At this point, we introduce the secular (or pseudopotential) approximation [26, 27].
In this approximation, the amplitude of the micromotion is taken to be small as
compared with the amplitude of the secular motion (i.e. z, < Zg.). Additionally,
since we expect the drive frequency €2 to be larger than the secular frequency wse.,
we assume that Z, > Z,... Identical expressions hold for y. Substituting back into

Eq. 2.19,

T W —Tsec
= Q—g cos(Qrt) (2.20)
Ju Mo Ysec
Solving the equation for the micromotion is now straightforward:
€ V '/L.SBC
= Q2;;2 cos(Q2rt) (2.21)
y,u mry T —Ysec

As we may expect, the trajectory due to micromotion oscillates at the rf frequency
Qp. Additionally, the amplitude is guaranteed to be smaller than the secular motion
amplitude since we can rewrite the prefactor QVy/mriQ3 as /2, where ¢ is a Mathieu

parameter. For a stable trap, ¢ cannot exceed .908, so z, < .454x,... Plugging our

26



expressions for the micromotion (Egs. 2.20 and 2.21) into Eq. 2.19,

j'sec QZ‘/OZ

= 2..40)2
m2ry s,

xSGC

cos?(Qrt) (2.22)

Ysec Ysec

If we again use the approximation that €2 is fast compared with wg.., we can time

average Eq. 2.22 over one period of rf drive. Using that (cos?(Qrt)) = 1/2,

jsec 2V2 Tsec
= ——Q2 L (2.23)
gsec 2m TOQT ysec
The solutions to these simple differential equation are given by
Tsee = Acos(wyt+ @) (2.24)
Ysee — B COS<Wyt + 5) (225)
where

Wy = ———
Y ﬂmr% QT

are the secular frequencies in the x and y directions. A schematic of an ion’s position

as a function of time is plotted in Fig. 2.4.

One particularly nice feature of the pseudopotential model is that it allows ap-
proximation of the trap depth. We define trap depth as the maximum energy an ion
can have before running into the rods [27]. The trap depth is calculated by treating

the system classically and equating forces:

1
QD, = §mw§r§ (2.27)

where D, is the depth in the Z direction. Rearranging and substituting for w, gives

p, = 9V

— 2.28
4mr3Q3, ( )
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Figure 2-4: Secular motion and micromotion for a trapped ion. The large-amplitude,
low frequency curve (blue) is the secular motion, while the high frequency red curve
is the total ion motion. For this figure, Qr = 5w and |z,| = .3|Tse|.

If we again substitute typical experimental values (Vy = 320 V, Q¢ /27 = 17.5 MHz,
ro = .6 mm), we find a trap depth of 6.4 eV. Given that we have been able to hold ions
experimentally as low as 2 eV, these trapping parameters provide good confinement.

Additionally, as we have seen earlier, they are well within the Mathieu stability region.

2.4 Operating the Trap

In addition to setting an appropriate rf drive frequency and voltage, several other
factors must be addressed before we can trap ions. First, we need to ensure that
the trap is in an ultra-high vacuum (UHV) environment. At high pressures, random
collisions between the ions and background gas will impede the trapping process.
Once the trap is under UHV, we need to devise a way of ionizing neutral strontium.
Next, we need a way to image the ions. Finally, we should have the flexibility to
compensate for any microscopic defects or stray fields in the trap that may alter the

potential.
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2.4.1 Vacuum System

The UHV system in this experiment was built to achieve a vacuum of 10719 torr. The
design is relatively straightforward (see Fig. 2.5). The ion trap chamber (Kimball
Spherical Octagon, MCF450-S520400-A) connects to the vacuum system via a 2 3/4”
conflat (cf) fitting. This fitting connects to three branches. The first branch connects
to a valve, permitting attachment of a rough or turbo pump. This allows us to bring
the trap pressure from atmosphere down to ~ 107° torr. The second branch connects
to an ion pump (Varian StarCell Vaclon Plus 40). With a pumping speed of 20 L/s,
the ion pump can be used to evacuate the ion trap chamber to ~ 107° torr. The

third branch connects to an ion gauge (Varian SenTorr) to monitor the pressure.

To Ion Gauge

T Ion Pump

Trap Chamber Valve
Turbo Pump

Figure 2-5: Schematic of the ion trap chamber and vacuum assembly. See text for
details.

Before using the trap, it is “baked” by maintaining it at a temperature of 150°C
for one week. The entire trap assembly is wrapped in aluminum foil, covered with
heater tape, and wrapped with a second layer of foil. During this process, water vapor
and hydrogen gas are driven off the interior surfaces and readily collected by the ion
pump. Once an acceptable pressure has been reached, the heater tape and foil may

be removed, and the system can cool to room temperature.
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2.4.2 Ionization

In order to create ions from a neutral strontium source, an electron beam was fired
at a strontium oven. The oven consists of a small piece of strontium wrapped in
tantalum foil. A high current (typically 4.5 A) is passed through the foil, thereby
heating the strontium within and spraying neutral atoms towards the trapping site.
On the opposing side of the trap chamber sits a small coil of tungsten wire biased at
-20 V. When a voltage is passed through the wire (typically 2 V), it emits a stream of
electrons which ionize the strontium in the trapping region. In practice, this method
is almost always effective for loading an ion cloud into the trap. A diagram of the

setup can be seen in Fig. 2.6.

g =
= TR

Figure 2-6: Picture of the trap chamber showing the strontium oven and electron
gun. Collisions between the electrons and neutral strontium causes ionization at the
trapping site.

2.4.3 Ion Detection

When strontium ions are irradiated with the proper frequency of laser light, they will
absorb photons and transition to higher energy states. Soon thereafter, the atoms

will fluoresce by decaying to the ground state and emitting photons. We employ two
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Figure 2-7: Optical setup for detecting and imaging ions. The ion fluorescence signal
is focussed by a 100mm meniscus lens and a pair of achromatic doublet lenses (100mm
and 500mm focal lengths), providing ~7X magnification. A 50:50 beam splitter sends
half the signal through a pinhole and into a photomultiplier tube (PMT), while the
other half is sent to a CCD camera for imaging.

different methods to detect this fluorescence. The first is a simple photon-counter
setup. Light emitted from the ion trap is focussed through a pinhole to reduce
scatter, then sent to a photomultiplier tube (PMT). The output signal from the
PMT is directed to a lab-built FPGA controller for signal processing. This allows
us to count the total number of photons received during a user-specified period of
integration. Additionally, the controller can sync to an external trigger so that any
periodicities in the ion fluorescence signal may be observed. A schematic of the setup

is shown in Fig. 2.7.

The second method for detecting ions is direct imaging with a CCD Camera
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(Princeton Instruments PhotonMax). The camera contains a silicon charge-coupled
device (CCD) segmented into a grid of 512x 512 light-sensitive cells. The total number
of photons per frame incident on each cell is recorded, and the result is output to
form an image. Software designed in lab allows us to set the integration time (100ms
minimum), measure the total fluorescence intensity, digitally zoom in on regions of
interest, and perform background subtraction. Images of trapped ions can be seen in

Fig. 2.8.

Trapped lon Cloud Trapped lon Chain

Figure 2-8: CCD camera image of trapped ions. Left: a large, hot cloud of trapped
ions. Right: three individual ions lined up along the trap axis.

2.4.4 Compensation

When performing ion trap experiments, it is necessary for the ions to sit exactly along
the nodal line of the rf drive. Unfortunately, trap defects and stray electric fields make
this condition difficult to realize. A direct consequence of such imperfections is an
increase in micromotion amplitude, which may obscure delicate spectroscopic features
and cause Doppler shifts in atomic transition frequencies [28]. We therefore need to
detect and eliminate micromotion.

The best way to minimize micromotion is to push the ions back to the rf null. To
accomplish this, compensation electrodes with static DC biases are built into the ion
trap. By including two radial biases and one axial bias, it is possible in theory to

perfectly compensate the trap along all three degrees of freedom.
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Both the PMT and the camera can be used to detect micromotion (see Fig. 2.9).
Recalling Eq. 2.21, we expect the micromotion oscillation to occur at the rf drive
frequency 2. Thus by triggering the photon counter at the drive frequency, we can
observe periodicities in the ion fluorescence due to micromotion. Similarly, micro-
motion causes an ion image to become spread out when viewed with a camera. By
appropriate adjustment of compensation voltages, the oscillations on the PMT and

spreading on the camera will vanish, and the ions will sit along the rf node.

Z-axis Compensation

Radial Micromotion
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Figure 2-9: Detection of Ion Micromotion. Left: micromotion oscillations for endcap
voltages of 7V (blue), 31V (green), and 45V (red). The green curve exhibits good
compensation, while the blue and red curves show a relative phase flip. Right: CCD
camera image of a single ion with a large radial micromotion.

2.5 Summary

In this chapter, we have discussed the theory and experimental considerations of
trapping ions. Starting with a relatively simple potential, we were able to solve
the equations of motion and derive stability criteria for ions in a linear Paul trap.
We were also able to gain insight into ion behavior and calculate the trap depth by
making some small approximations. Finally, we have discussed the construction and
operation of ion traps. At this point, we are ready to consider the interesting physics

that confined strontium ions can offer.
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Chapter 3

The Strontium Ion

This chapter will characterize the strontium ion and describe some experiments that
may be performed when ions are trapped. Although there exist many suitable atomic
species for ion trapping, atoms in Group II of the periodic table are preferable. After
ionization, these atoms will contain a single valence electron, and their electronic level

structure is vastly simplified.

Research groups around the world work with various atoms, including ‘Be™ [29],
0Cat™ [30, 31], ®SrT [32, 33, 34], and "' Cd™ [35]. We have chosen to trap ®¥Sr™ since
all of its relevant transitions can be addressed with diode lasers, giving a compact
and relatively inexpensive setup. We shall now turn our attention to the strontium

energy level diagram and discuss the three important transitions.

3.1 Energy Level Structure

A partial energy level diagram for strontium is shown in Fig. 3.1. A variety of states
are displayed along with their transition wavelengths and lifetimes. For our exper-
iments, there are three important transitions: 52S;2 — 52Py/e (422nm), 5°Pp —
42Dy (1092nm), and 52S; /5 — 4°Dj5,5 (674nm). Each serves a different purpose, and

each is critical for realizing useful results.
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Figure 3-1: Energy level diagram for ®Sr™. The relevant transitions are at 422nm
(blue), 674nm (red), and 1092nm (IR).

3.1.1 The 422nm Transition

Before carrying out any experiments, the atoms must first be detected and cooled.
The 422nm blue transition is used to accomplish both. When 422nm light impinges
on a trapped strontium ion, it induces the transition 52S; /2 — 52P, 2. On average,
the atom will decay back to the ground state after 7.9ns, emitting a 422nm photon.
This photon can then be detected with a photon counter or CCD camera (see Sec.

2.4.3).

The absorption and emission of the blue photon can also reduce the energy of
the atom through the Doppler cooling process [36, 37]. Suppose the frequency of the
laser is tuned slightly lower than the transition frequency. Atoms moving towards
the beam will effectively “see” a higher frequency due to the Doppler effect. As a

result, the atom will be on resonance, absorb the photon, and receive a momentum
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kick of hk in the opposite direction. When the atom decays back to the ground state,
however, the direction of photon emission is random. Thus on average, the atom will
lose Ik units of momentum each time a photon is scattered. In this way, the motion

and temperature of the ions can be reduced.

Unfortunately, there is a limit to the temperatures achievable by Doppler cooling
[38]. Though photon emission on average imparts no momentum to the atom, each
individual event causes a small recoil. Thus, there is a small amount of heating
associated with emission, creating a Doppler cooling limit of kgT = hI'/2, where kp
is Boltzmann’s constant and I' is the natural linewidth of the transition. For the

422nm strontium line, calculation of the Doppler limit yields T=76 uK.

Experimentally, however, the ion temperature was determined to be 660 mK -

several orders of magnitude hotter than the Doppler limit (see Fig. 3.2). Two factors
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Figure 3-2: Laser-induced fluorescence at 422nm from a cold chain of ions. As the fre-
quency is increased towards resonance, the fluorescence increases. Above resonance,
however, laser heating decrystallizes the chain and the signal drops. The lineshape is a
convolution of a Lorentzian (natural linewidth) and a Gaussian (Doppler broadening).
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contribute to this value. First, the blue laser was simultaneously being used to cool
the ions and determine their temperature. This results in an upper temperature
bound, not an accurate measurement of the true temperature. Second, only one
degree of freedom was being cooled. To reach the Doppler limit, all three directions
must be addressed concurrently. At this point, it is difficult to tell whether or not
this temperature is sufficient to observe the red laser effects since the measurement
provides only an upper bound. However, as we shall soon see, the red laser itself can

be used to more accurately determine ion temperature.

3.1.2 The 1092nm Transition

A strontium ion in the 52Py )y state will decay to the 4?Ds/, metastable state with
probability 1/14. After a short amount of time, all of the strontium ions would be
shelved in the Ds/, state, and the detection and cooling processes would fail. As a
result, we employ a 1092nm laser to repump the ion back to the P/, state. This
prevents depopulation of the ground state and allows us to continue running our

experiments as usual.

3.1.3 The 674nm Transition

The 674nm line in %8Sr™ is a strongly forbidden electric quadrupole transition. Its
frequency has been reported as 444 779 044 095 484.52+.10 Hz [39], and represents
one of the most accurately measured quantities in all of atomic physics. Since the
transition is strongly forbidden, its lifetime is large (345ms) and its natural linewidth
is small (0.4 Hz). The crux of this thesis revolves around addressing this narrow line
in order to probe trapped strontium ions. In particular, we wish to observe the effects
of depletion and quantum jumps and accurately measure the ion temperature.
Before describing these effects in greater detail, it is useful to mention some of
the other applications of the 674nm line. Recently, there has been interest in using
trapped ions for optical clocks [40]. Since visible radiation is of higher frequency than

the microwave radiation used for cesium atomic clocks, optical clocks will have greater
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time resolution and should prove to be more accurate. P. Gill ef. al. have demon-
strated a frequency standard based on the 674nm line that is three times more stable
than the current cesium standard at NIST [41]. Additionally, the 5%S;,, — 4°Dj)s
transition has been proposed as an optical qubit for ion trap quantum computation
[42, 43]. In these schemes, the S; /5 state serves as the logical |0), the Ds/, state is the

logical |1), and the 674nm radiation is used to couple the two states to each other.

3.2 Linewidth Considerations

The natural linewidth of the 674nm transition is 0.4 Hz. Experimentally, however, the
linewidth appears much broader. There are two significant effects: Doppler broaden-
ing and power broadening. Doppler broadening is the dominant process; even if we
were to cool to the Doppler limit, the resultant linewidth is calculated to be 125 kHz
(a full derivation of the Doppler linewidth will be given in Sec. 4.1.3). Therefore, the
narrow Lorentzian natural linewidth will be heavily shrouded by the broad, Gaussian
Doppler profile.

If we were to employ techniques to cool below the Doppler limit, narrower linewidths
could be attained. However, as the linewidth continues to shrink, one will begin to
observe power broadening effects. When intense laser light irradiates an atom, it will
be possible for slightly off-resonant frequencies to induce the transition [44]. This
off-resonant excitation makes the absorption line appear broader than its natural
linewidth. For a transition with a natural linewidth ~, the steady state solution to
the Optical Bloch Equations allows calculation of the power-broadened linewidth ~/
[45]:

Y =vvV1+s (3.1)

In Eq. 3.1, sg defines the on-resonance saturation parameter,

T 2 I '
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where €2 is the Rabi frequency, I is the laser intensity, and I; is the saturation intensity

of the transition, given by

whe
I, = 3.3
33T (3:3)

Plugging in numbers for the 674nm transition, we find that I, = 1.9 x 1075 W /m?.
Thus, for a typical 200 uW beam focussed to a 200 um spot size, we calculate a

saturation parameter sy ~ 1 x 10 and a power-broadened linewidth of 7/ ~ 10 kHz.

3.3 Depletion, Quantum Jumps, and Temperature
Measurements

We shall now turn our attention to three of the interesting experiments that can be

performed with trapped strontium ions using the 674nm transition.

3.3.1 Depletion

Consider the strontium level structure as shown in Fig. 3.1. If we irradiate the atom
with only 422nm and 1092nm radiation, it will cycle primarily between the S and P
states, occasionally decaying to the D3y state and consequently repumped by the IR
laser. Since the atom emits a 422nm photon each time it decays from the P state to
the S state (on average, every 7.9ns), the atom will fluoresce quite strongly and can
be easily observed.

Now consider the effects of shining all three lasers at the atom simultaneously. If
the red laser is significantly more powerful than the blue, an atom in the ground state
will begin to cycle between the S state and the D5/, state. This causes a depopulation
of the S — P transition, and the 422nm photon emission rate will decrease. As a
result, part of the fluorescence signal will disappear, since the imaging optics cannot
detect an ion in the D state. This phenomenon is termed depletion, and should be
visible in both clouds and crystals. Given a moderately stable and powerful red laser

tuned to the transition frequency, depletion should be easily observable.
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3.3.2 Quantum Jumps

Quantum jumps [46, 47, 48] are fascinating physical phenomena closely related to
depletion. Let us again consider a strontium ion in the ground state. If we were to
look for depletion, we would tune the red laser to the transition frequency, increase
the red power as much as possible, and observe a dip in the fluorescence signal for the
entire time the red laser was on. A simple question can now be asked: what happens

when the red laser power is decreased?

In this case, the simple explanation is the correct one. We have an atom in the
S state, a blue laser trying to excite it the P state, and a red laser pushing it to the
Ds,; state. Since there can only be one transition at a time, it is easy to imagine a
competition between the blue and red lasers. For some value of relative laser powers,
the atom will have some probability p of transitioning to the D/, state, and some
probability 1 — p of being excited to the P state. If the red laser power is then
increased, so will the probability of transitioning to the Ds/, state. If we increase the
red laser power dramatically, p approaches 1, and we find ourselves in the depletion
regime. Of course, if the red laser power is reduced dramatically, p approaches 0, and

we see the usual fluorescence signal.

Naturally, the intermediate regime is the most interesting. Let’s consider the
fluorescence signal of a single ion over time. When the atom cycles between the S
and P states, 422nm photons will be continuously emitted, giving some number of
counts per time window. Although there will always be some statistical noise in the
number of counts, we expect the value to remain relatively steady. Every so often,
however, the red laser will successfully excite the S — D5/, transition. While the
atom remains in this state, no blue photons can be emitted. Therefore, we expect our
fluorescence signal to drop to 0. The number of counts will increase to the previous
value only after the atom has decayed from the Ds/, state and begins transitioning

between S and P once more.

These random hops in the fluorescence signal are the signature of quantum jumps.

Every time the single ion finds itself in the ground state, it faces a probabilistic choice

41



to transition to either the P or D5/, state. Although we are able to predict the long-
term fractions of time spent in each state, we can never with certainty predict the
behavior in the short term. Recent work [49] has analyzed over 200,000 quantum
jumps of a single strontium ion, demonstrating strongly randomized behavior of the
system. For this reason, many researchers are interested in exploiting quantum jumps
for random number generation.

An important theoretical problem is to determine the relative red and blue intensi-
ties necessary to observe quantum jump effects. Unfortunately, the analytical expres-
sions describing the system cannot be cast into an enlightening or easily interpretable
form [50]. Consequently, we solved the problem numerically using Mathematica.

We wish to find the probability of being in the Dj /5 state as a function of red laser
Rabi frequency (i.e. power) and detuning. Setting the blue laser on resonance with a
Rabi frequency of 10 MHz, we determined this probability over a range of red Rabi

frequencies and detunings (see Fig. 3.3).
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Figure 3-3: Numerical solution to the 3-level problem with spontaneous emission.
The probability of being in the D state is plotted as a function of red Rabi frequency
and detuning.
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We see that for €2,.4 > 10 kHz, the probability of finding the atom in the D state
remains relatively uniform. This corresponds to the low end of the depletion limit,
where the red power is strong compared with the blue. Therefore, we would expect
the best quantum jump contrast to be found in the regime where 2 kHz < €2,..4 < 10
kHz.

We also notice that the probability varies little over a detuning range of 20 MHz.
The calculated profile is directly related to the blue laser power. The blue Rabi
frequency of 10 MHz causes the S — Ds /5 transition to be broadened; as a result, the
red laser can be slightly detuned and still excite the transition. The small dip around
resonance is a manifestation of the Autler-Townes effect [51], which predicts a dip
whose size is proportional to the strength of the blue laser. However, since we will
only work with low to intermediate blue power, we will not expect to see any detuning
effects. As a result, we can produce a simplified version of Fig. 3.3 by setting the
detuning equal to 0 (see Fig. 3.4). This confirms that we should hunt for quantum
jumps with a red Rabi frequency between 2 kHz and 10 kHz.
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Figure 3-4: Probability of being in the D state as a function of Rabi frequency with
the red laser on resonance.

To gain intuition about the dynamics of the system, I wrote a Monte-Carlo sim-

ulation of the experimental setup (see App. A). The program takes the red and
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blue laser Rabi frequencies as input, and outputs the simulated fluorescence signal
over several seconds. Using the results of the previous analysis, I was immediately
able to identify a workable range of red Rabi frequencies in which to look for jumps.
Fig. 3.5 shows the output of two different simulations with slightly different red Rabi

frequencies.
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Figure 3-5: Monte-Carlo simulation of quantum jumps for two different red Rabi
frequencies. Left: Qye=10 MHz, €,..q=4 kHz. Right: Q,.=10 MHz, Q,.4=8 kHz.

For the 5 seconds of simulated data, it is clear that there are many more quantum
jumps at the higher red Rabi frequency (as expected). Re-running the simulation
over a range of red Rabi frequencies, I found that quantum jumps were discernable
from ,.q=2 kHz to €2,.q=40 kHz. This is great news for our experiment, since we

will expect jumps to be observed for over 2 orders of magnitude in red power.

3.3.3 Temperature Measurements

As mentioned in Sec. 3.1.1, scanning the blue laser gives an inaccurate measurement
of ion temperature. To improve the measurement, we will instead seek to scan the red
laser. Since the red laser does not address the cooling S — P transition, we can fix
the blue laser at a single frequency (and therefore fixed cooling) while independently
sweeping the red laser. This will allow us to find the Doppler linewidth of the ions,

from which we can extract the temperature.
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Let us consider the effects of sweeping the red laser across the 674nm transition.
For red laser intensities at and above Iy and low blue power, the probability of being
in the D state on resonance is 1/2. Since the natural lineshape is Lorentzian, slightly
off-resonant light will be able to excite the transition. However, we can never populate
the D state more than 50% of the time. Therefore, for large red power, we can expect
a profile that has Lorentzian tails, but flattens out across all frequencies which would
give saturated excitation (see Fig. 3.6). By reducing the power, this phenomenon

becomes unimportant, and we can observe the full line.
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Figure 3-6: Expected spectrum of the 674nm line for high and low red laser power.
Left: predicted fluorescence for high red power. Since the maximum population in the
D state is only 1/2, we predict a flat bottom to a Lorentzian. Right: when the power
is lowered and the amplitude of the Lorentzian is smaller, we avoid the saturation
barrier and the full lineshape is recovered.

Notice, however, that the line would still be broadened to ~20 MHz by the blue
laser. To circumvent this effect, the blue laser intensity must be reduced below
saturation. Unfortunately, as the blue power is decreased, it becomes more difficult
to image, cool, and keep an ion crystal. In all likelihood, this will be the limiting
factor in making temperature measurements. Our final upper bound will depend
upon how low we can set the blue power and still run the experiment.

Resolved sidebands represent a more accurate method of extracting the ion tem-
perature. In the limit of a single, cold ion, the red laser is able to excite the S — Ds

transition when its detuning is an integer multiple of the secular frequency [52]. To

45



determine the temperature, we simply have to make a measurement of the peak am-

plitudes.

Let us think about the 674nm absorption spectrum of a trapped strontium ion.
Naturally, when the red laser is tuned to a frequency wy resonant with the transition,
there will be strong absorption. However, this is not the only frequency at which we
can observe a resonance. Since the atom is moving in a harmonic pseudopotential
with some frequency wye., the absorption and emission spectrum will have additional
components at wytnws.., where n is an integer. For these sidebands to be observed, it
is imperative that the linewidth of the transition be smaller than the secular frequency.
Recall that though the natural linewidth of the 674nm transition is 0.4 Hz, Doppler
broadening effects will yield a linewidth of order 100 kHz (when the ion is cooled to
the Doppler limit). Given that the secular frequencies of our linear Paul trap are ~1

MHz, we will be able to resolve sidebands provided our ions are cold enough.

The ratio of sideband amplitudes amplitudes can be used to determine the average
number of motional quanta, (m). As derived in Ref. [53], the ratio of the upper

(W= wo + Wsee) t0 lower (w = wy — wse) sideband amplitudes is given by

= (3.4)

When (m) is small, there will be a clear disparity in sideband amplitudes, and (m)
can easily be determined via. Eqn. 3.4. Since the population (m) arises from a ther-

mal distribution, we can use the standard Planck formula from statistical mechanics

to write [54]:
1
ekrs? —1
Rearranging for temperature, we find that
hwsec

kpT = (3.6)

1
ln(l-l—W)
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Therefore, simply by measuring the ratio of peak hights, one is immediately able to
determine the average number of quanta (m) as well as the ion temperature. This
represents a highly accurate method of measuring temperatures of only a few pK
while leaving the system intact.

For Eq. 3.4 to give good results, we must be in the low (m) limit. If the number of
motional quanta is large, then the upper and lower sidebands will have approximately
equal amplitudes. In this case, we must take the ratio of the sideband to carrier

amplitude:

Alower 1

= _p? 3.7
Acarrier 277 <m> ( )
or alternatively,
Aumoer 1,
— 1 .8
Acarrier 27] <<m> * ) (3 )

where 7 is the Lamb-Dicke parameter, given by

i 27 h
= KIln = —
n 0 AV 2mwge,

(3.9)

Once 1 and the amplitude ratios are calculated, we again can immediately determine

(m) as well as the ion temperature.

3.4 Sideband Cooling

Sideband cooling represents the next class of ion trap experiments. Although sideband
cooling is slightly beyond the scope of this thesis, it deserves a few words on account
of its great importance.

Sideband cooling [55, 56, 57| exploits the physics of resolved sidebands to cool

ions below the Doppler limit to their motional ground state. This process eliminates
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Figure 3-7: Energy level diagram for sideband cooling. 0 and 1 correspond to the
S and Ds/, states (respectively), and m is the number of motional quanta. After
exciting an atom in the state |0, m) with radiation of energy E; — Ey — hw, the
atom will on average decay to the state |0,m — 1), losing one motional quanta in the
process.

negative effects due ion motion (e.g. Doppler shifts, micromotion), and is a necessary
precursor to implementation of logic gates in ion trap quantum computation.
Consider the energy level diagram in Fig. 3.7. Suppose we have an atom in
the ground electronic state with some number of motional quanta m. To begin the
sideband cooling process, we irradiate the atom with laser light of frequency wy—wsee,
where wy again is the on-resonance transition frequency. After excitation, we are now
in the |1,m — 1) state. The atom then spontaneously decays, landing in the |0, m),
|0,m — 1), or |0,m — 2) state with roughly equal probability. Thus, on average,
the atom can be found in the state |0,m — 1) after one cycle of sideband cooling,

corresponding to the loss of one motional quanta. Repeated iterations cause the
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atom to eventually land in the electronic and motional ground state |0,0). One can
verify that the atom is in its ground motional state if the lower sideband disappears,
since there are no accessible lower energy states.

We can again take a red spectrum after sideband cooling to determine (m), and
therefore, the ion temperature. Since the sideband cooling process is inherently de-
signed to minimize the number of motional quanta, we expect to find the atom in
the low (m) limit. Therefore, we can use Eq. 3.4 to accurately measure (m). As a
check, consider the (m)=0 case. According to Eq. 3.4, the ratio of amplitudes should
tend to infinity. This is consistent with our prediction that the lower sideband will

disappear when there are no further motional quanta left to cool.

3.5 Summary

In this chapter, we have explored the structure of the strontium ion and the various
interesting experiments that can be performed when ions are confined in a linear
Paul trap. We have found that phenomena such as depletion, quantum jumps, and
temperature measurements should be observable given our equipment, while sideband
cooling presents future experimental opportunities. We shall now proceed by detailing

the design and construction of laser systems to observe these effects.
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Chapter 4

An lIodine-Stabilized Red Laser

We now turn our attention to the construction of a laser system to address the
5251/ — 4?Dj)o transition in ®Sr*. This chapter will describe a first attempt at
building a laser stable enough to discern the physical effects discussed in Chapter 3. 1
will first present the theory behind various optical components commonly used to sta-
bilize diode lasers. I will then detail the construction process and show experimental

results of laser stability.

4.1 Theoretical Background

4.1.1 Laser Diodes

A laser diode (Sanyo DL3149-056) was used in all experiments to attain the desired
674nm wavelength (see Fig. 4.1). Diode lasers offer many advantages compared with
other types of lasers: they tend to be quite easy to work with, their output amplitude
is relatively constant, and their cost is surprisingly low (approximately $15 each).
Unfortunately, linewidths for diode lasers are typically ~300-500 MHz [58], which is
4-5 orders of magnitude too large for these experiments. As we will soon see, however,
this linewidth can be dramatically reduced through well-known techniques.

Since their inception in the 1960s, an impressive number of books and articles

have been written about diode lasers [59, 60, 61, 62]. In general, lasers produce
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Figure 4-1: The Sanyo DL3149-056 laser diode. Left: photograph of the diode housing
and connection pins. Right: circuit schematic. LD=laser diode, PD=photodiode. Pin
2 is held at ground, pin 1 is at negative voltage, and pin 3 (optional) is at positive
voltage.

stimulated emission via population inversion, in which electrons are more likely to be
found in excited states rather than ground states. However, since the Einstein A and
B coefficients are exactly the same for absorption and emission, one cannot achieve a

population inversion with only two states. Three or more levels are required.

For semiconductor lasers, population inversion is realized via valence and conduc-
tion bands at a p — n junction. Because the electrons and holes reach an equilibrium
in the conduction and valence bands much more quickly than they can recombine, the
carriers populate the states close to the band gap. We can treat the semiconductor
as a three-level system: the ground state is the valence band, the first excited state
is the lower edge of the conduction band, and the third level is comprised of higher

states in the conduction band.

When an injection current is applied across the p —n junction, electrons and holes
will recombine and emit photons with random polarizations and phases. However,
above a certain current threshold, photons will be able to cause recombination by
stimulated emission. This process produces a second photon that is in phase with
the first, resulting in coherent light. Amplification of the effect can be achieved by

placing the active material between two highly reflective mirrors.

As discussed by Dumke [63], direct band gap semiconductors are far easier to
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fabricate than indirect band gap semiconductors. For materials with an indirect
band gap, photon emission must be accompanied by phonon emission, causing the
probability of recombination to sharply decrease. To date, no laser action has been
observed in indirect band gap semiconductors [64].

The diode laser used in these experiments is a direct gap AlGalnP semiconductor
whose typical lasing wavelength is 670nm. Coarse wavelength tuning may be realized
by varying the temperature of the diode. Colder temperatures cause the band gap
to shrink slightly, resulting in a longer wavelength. Finer tuning may be achieved by

varying the injection current.

4.1.2 Diffraction Gratings

Diffraction gratings are small optical components consisting of equally spaced grooves
deposited on a reflective substrate. The grooves are typically spaced several hundred
nanometers apart. Constructive and destructive interference effects from the closely-
spaced grooves cause reflections from the grating to occur only in discrete directions,
called orders. The zeroth order reflection is wavelength independent and behaves
as though the grating were an ordinary mirror. All higher order reflections have a
wavelength-dependent angular divergence from the zeroth order reflection.

A diffraction grating can be used to provide optical feedback to the laser diode,
thereby narrowing the linewidth to ~1 MHz [65]. To accomplish this, the grating
must be placed such that the first order reflection is fed back to the diode (see Fig.
4.2). This creates a resonant cavity between the back facet of the laser diode and the
grating surface. In this arrangement, deemed an extended-cavity diode laser (ECDL),
only discrete modes will be in resonance and lase. As the length of the external cavity
increases, the laser stability improves, although the mechanical stabilization of the
optical components becomes more difficult.

Construction and characterization of ECDLs has been extensively studied in detail
(66, 67, 68]. In most configurations, the grating is attached to a piezo-electric crystal
affixed to a kinematic mount. This allows one to vary the length of the external

cavity, providing fine and coarse frequency tuning capability. The laser stability is
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Figure 4-2: Schematic of an extended-cavity diode laser. Laser light from the diode is
collimated and directed towards a diffraction grating. The zeroth order reflection is
used for science, while the first order reflection returns to the diode for stabilization.
Coarse tuning is performed using a kinematic mount (ThorLabs KMS), and fine
tuning is accomplished by varying the voltage across a piezo-electric crystal.

highly dependent on the external cavity’s length. Small variations due to vibrations,
mechanical instabilities, or thermal expansion can easily destroy the sensitive feed-
back. Thus, the entire ECDL setup is typically housed in a temperature-controlled

box and insulated from vibrations with sorbothane rubber.

Nonetheless, mechanical stabilization of the system to picometer precision over
the long term is a difficult, if not impossible task. We therefore should seek ways to
utilize the zeroth order output beam to further improve the laser frequency stability.
Our approach was to use electronic feedback to lock the laser frequency to a fixed
reference. The two most common frequency references - gas absorption cells and

Fabry-Perot cavities - will now be discussed in detail.
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4.1.3 Absorption Cells

Gas absorption cells contain a pure species of molecular vapor through which laser
light can pass. If the frequency of the laser is on resonance with one of the molecular
transitions, photons will be absorbed by the gas. If one then monitors the intensity
of light passing through the cell, one will see a dip in the transmission signal on
resonance. Since resonant frequencies of transitions do not change over time, they

serve as outstanding frequency references.

The absorption cell used in this experiment contained I, and was purchased from
ThorLabs (QC19100-I). The cell was fabricated from Corning 7740 quartz. The ends
are slanted at Brewster’s angle to prevent retroreflections, and the entire cell is placed

in an oven to increase the absorption signal.

The atoms in the cell are held at some temperature 7" (typically 100°C) and move

at some velocity v given by the Maxwell-Boltzmann distribution [69]:

M2

n(v)dv = N e 25T du (4.1)

27T/€BT

where NN is the number of particles, M is the particle’s mass, and kg is Boltzmann’s
constant. Since the atoms are in motion relative to the laser light, each one “sees” a
different frequency due to the Doppler effect. The Doppler-shifted frequency is given
by:

v =1 (C+”) (4.2)

If v is positive (moving towards the light), the observed frequency is slightly higher
than the laser frequency, and the light appears blueshifted. Rearranging Eq. 4.2 and
substituting into Eq. 4.1, we can calculate the probability distribution in frequency:

MCQ _JMCQ(V—VO)Q

n(V)dl/ =N me QkBTVg dv (43)
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This is simply a Gaussian with a full-width at half max (FWHM) given by

kgT

Av =2.355m1/ 77

(4.4)

Substituting the relevant values, we find a FWHM of 543 MHz. This Doppler broad-
ening dominates all other lineshape considerations (e.g. power broadening, collisional

broadening, the natural linewidth, etc.).

One way to circumvent Doppler broadening effects is to employ saturated absorp-
tion methods [70, 71, 72]. In saturated absorption setups, a laser beam is split and
sent counterpropogating through the absorption cell. Since the beams are at the same
frequency, each will excite transitions on opposite sides of the velocity distribution:
one beam addresses atoms with velocity v, while the other addresses atoms with ve-
locity —v. The absorption signal will slowly increase as the frequency of the laser is
tuned closer to resonance, since there are more particles in this region of the velocity
distribution. At the peak of the distribution, however, both beams will address the
same velocity class, causing a dip in the absorption signal. This dip occurs exactly at
the desired transition, but is typically over 2 orders of magnitude narrower than the
Doppler-broadened linewidth. As we will soon see, narrower resonances are preferable

for laser stabilization.

4.1.4 Fabry-Perot Cavities

The Fabry-Perot cavity [73, 74, 75] makes use of multi-beam interference to create
sharp, wavelength-dependent resonances. In typical setups, laser light impinges on
a pair of highly-reflective mirrors, and is transmitted through the etalon only for
certain frequencies. Consider the geometry presented in Fig. 4.3. Two plates with
reflectivities R and transmittances 7 = 1 — R are separated by a distance d. We
now investigate the effect of impinging a beam of light at some angle « [76]. If the

incoming wave has some intensity I, and an electric field amplitude Ag, then the
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Figure 4-3: Drawing of a Fabry-Perot cavity. Two highly reflecting mirrors held
a fixed distance d apart lead to constructive interference and transmission only for
certain resonant frequencies.

intensity after passing through the first plate will be given by
II=01-R)y=TI (4.5)
whereas the amplitude can be written
A =AWV1-R (4.6)

By simple bookkeeping of reflected and transmitted amplitudes at each junction, we

can find the amplitudes of the waves traversing the second plate:

A = A(1-R)

Ay = A(1-R)R

As = Ay(1-R)R?

A, = A(1-R)R" (4.7)
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We expect the incoming wave to be of the form £ = A cos(kx —wt+§), where k is the

magnitude of the wavevector and ¢ is a phase shift. For each internal reflection within

the cavity, the wave picks up a phase shift due to the extra path length traversed:

B 2kdn

COS «v

J

(4.8)

where n here is the index of refraction. Using this definition of § and the expressions

for the wave amplitudes (Eq. 4.7), we may calculate the outgoing electric fields:

b, =

EQI

A; cos(kx — wt)

(
Ay cos(kx — wt + 0)
Az cos(kx — wt 4 26)
(

A, cos(kx — wt + (n — 1)9)
Ap(1 = R)R" * cos(kx — wt + (n — 1)0) (4.9)

The total electric field at the far side of the etalon may be found by summing all the

E,’s. Using that ¢ = cos + isin ¥,

Etot

_ Z Ao(l _ R)Rn—lei(kzx—wt-l-(n—l)é) (410)
n=1
. 1 & .
= eilha=wt=9) A (1 — R)ﬁ > Rrem (4.11)
n=1

The sum in Eq. 4.11 is a geometric series with R < 1:

0 ) Reid
R = 4.12
; ‘ 1 — Re® (4.12)

Substituting Eq. 4.12 back into Eq. 4.11, we find

Etot _ 6i(kz—wt)AO(1 o R)

= Rew (4.13)
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We may now use that I;,; = |Ej|? to find the output intensity:

(1-R)?
Ly = 1 . . 4.14
ot O(1 = Re)(1 — Re—) (4.14)
(1-R)?
= ] 4.15
’1+R2 —2Rcosé (4.15)
(1-R)?
4.16
"(1 = R)? + 4R sin%(0/2) (4.16)
Setting the angle of incidence o = 0 and substituting for §, we find
(1-R)?
Lior = Iy : — (4.17)
(1 —R)?+ 4R sin® (L)

The intensity as a function of A is plotted in Fig. 4.4.
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Figure 4-4: Fabry-Perot interference fringes for three different mirror reflectivities:
50% (green), 75% (red), and 95% (blue). The FWHM of the resonance peaks decreases
sharply as the mirror reflectivity approaches unity.

Due to the sin? factor in the denominator, the intensity is a periodic function
of the wavelength. We notice that if d = ’%‘, where m is an integer and n is the

index of refraction, the intensity will remain constant for any m. Since the peaks are
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separated by a wavelength )\ = 2dn, the separation in frequency space is given by

C

Sy — ——
v 2dn

(4.18)

This inter-resonance frequency distance defines the free spectral range (FSR) of a

Fabry-Perot cavity.

When characterizing a Fabry-Perot cavity, one often defines the finesse (F) as the
ratio of the FSR to the FWHM of a resonant peak. To calculate the finesse in terms

of mirror reflectivity, we first must calculate the FWHM of the peaks:

L 1 (1-R)?
L 4.19
Iy 2 (1-7R)2+4Rsin? () (4.19)
2
4R sin? ( ”dn) = (1-R)? (4.20)
sin (2de) _417k (4.21)
A 2VR

Eq. 4.21 gives two solutions, Ay and A:

2ndn ., (1-R 2mdn . (1 — R)
= sin T = —sin D 4.22
A ( 2\/R) 2VR ( )

We can subtract the solutions and convert to frequency units to find the FWHM:

= 2md
)\1 )\2 ran C

2vR

2mdn 2mdn FWHM _ P (1 — R) (4.23)

Since we are interested in the case of high reflectivity, we may approximate R >

(1 -7R), giving

c 1-R
FWHM = — 4.24
W 2rdn /R (4.24)
Thus the finesse can be written
FSR VR
F T (4.25)

“FWHM 1-R
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We see that simply by increasing the mirror reflectivity, we can improve the finesse
(and hence decrease the FWHM of the peaks). Unfortunately, there is a practical
limit of F =~ 50 for this parallel mirror geometry. To achieve a higher finesse, the
mirrors would need to be flat to within 5 nm - a challenging and expensive technical
feat. A better approach is to use a slightly different geometry, in which the parallel
mirrors are replaced by confocal spherical mirrors (see Fig. 4.5). This arrangement
is far less sensitive to small imperfections in the mirror surface, allowing much higher
finesses to be attained. Given mirrors of very high reflectivity, it is not uncommon
to obtain F > 100,000 [77, 78, 79]. The mirrors used in this experiment were 95%
reflecting, giving a theoretical finesse of 61. However, since the mirrors were aligned

in an invar spacer by hand, the maximum finesse achieved was ~15.

d

F 3
A J

Figure 4-5: Fabry-Perot cavity in a confocal arrangement. The centers of curvature
for each mirror intersect directly at the center of the etalon. Light entering slightly
off axis reflects in a confocal (or “bowtie”) mode, giving twice the path length of a
parallel plate Fabry-Perot.

The path length for the confocal Fabry-Perot cavity is approximately twice that

for the parallel plate cavity, so the expression for the FSR must be rewritten:

c
FSR = — 4.26
4dn ( )

For this thesis we used a 15 cm long confocal cavity with a free spectral range of
499.5 MHz. One of the cavity mirrors was mounted on a piezo-electric transducer
disk, allowing the length of the cavity to be finely tuned. Given an experimentally
determined F = 15, we find the FWHM for each Fabry-Perot peak to be 33 MHz -
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significantly narrower than the FWHM of Doppler-broadened absorption lines.

The major drawback of using Fabry-Perot cavities for laser stabilization is their
long term frequency drift. The invar spacer has a non-zero coefficient of thermal
expansion (1.6 ppm/°C), so temperature variations will cause a change in mirror sep-
aration. At 674nm, a .1°C change in temperature corresponds to a frequency change
of 65 MHz. Analogously, pressure variations can change the effective optical path
length between the mirrors. Fluctuations of 10 Pa (1/10000 atmospheric pressure)
will lead to frequency shifts of 20 MHz. To reduce these instabilities, we must employ

active feedback to stabilize the length of the cavity.

4.1.5 Electronic Feedback

Electronic feedback [80] allows one to stabilize the laser to a fixed frequency reference,
such as a gas absorption cell or a Fabry-Perot cavity. A photodetector can be used
to convert the resonance signal into an electronic signal. If the frequency of the laser
should change, the voltage signal at the photodetector will change as well. Electronic
circuitry detects the deviation and adjusts the injection current and ECDL grating
position to bring the frequency back to the original value. We shall now investigate

two methods of employing electronic feedback: side locking and peak locking.

Side Locking

Consider the resonance peak in Fig. 4.6. By combining a photodetector with an
absorption cell or Fabry-Perot cavity, we can generate a frequency-dependent voltage
signal. In side-locking setups, we choose a voltage V; along the side of the peak,
corresponding to a frequency 1. We then construct a feedback loop to keep the
voltage fixed at V. Suppose the laser frequency drops slightly below 1. This causes
a small decrease in the voltage signal, which is detected by the feedback electronics.
To compensate for the shift, the grating position and injection current are altered
to bring the voltage back to V4 (and hence the frequency back to vy). The highest

possible sensitivity to changes in voltage occurs when the slope is steepest, and this
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Figure 4-6: Side-locking to a voltage signal. Feedback circuitry holds the photode-
tector voltage at Vj, and hence the laser frequency at vj.

is consequently the optimal place to lock the laser.

Although side-locking techniques are relatively easy to set up, they carry several
disadvantages. Side-locking is very sensitive to changes in the amplitude or offset of
the voltage signal. For instance, if the temperature of the absorption cell changes, so
will the transmission and photodetector voltage amplitude. The feedback loop will
detect the change and vary the grating position and injection current, even though the
laser frequency was not drifting. Similarly, the feedback electronics will respond to
any change in background light sources (e.g. room lights, shadows, etc.). Controlling

and eliminating these factors is critical for achieving stable side locks.
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Peak Locking

As its name implies, peak locking can be used to stabilize a laser to the top of a
resonance signal. Consider the Gaussian signal in Fig. 4.7, perhaps generated by a
Doppler-broadened absorption line (the following analysis holds for other lineshapes
as well). We recognize that applying side-locking methods towards the top of the
curve will not be successful, since the small slope decreases the sensitivity to changes.
Instead, a lock-in amplifier is used to take the first derivative of the absorption signal.
The zero crossing of the derivative corresponds to the peak of the Gaussian, and is also
the point where the magnitude of the second derivative is largest. We thus stabilize

the laser by side-locking to the zero crossing of the first derivative.

Absorption Signal First Derivative

Amplitude
Amplitude

Frequency Frequency

Figure 4-7: Peak-locking to a voltage signal. Left: a Gaussian absorption signal.
Right: the first derivative of the signal on the left. The zero crossing (circled in red)
provides the optimal locking point.

As is always the case when side-locking, steeper slopes lead to improved perfor-
mance. Let us now examine the effect of linewidth on the first derivative’s slope.

Suppose we have an absorption signal of form

_ (1/71/0)2

I =Ae 2?2 (4.27)

where A is an amplitude and o is a width parameter characterizing the Gaussian.
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Taking the first and second derivatives, we find

dl Alv —vy) _—w?

d_l/ = ——( 02 e 202 (428)
d*I A (v —1)? A _w—w?
e (2

To find the slope of the first derivative in the locking region, we must evaluate d*I /dv?

at v = vy:

d*I

dv?

__A (4.30)

o2

v=vg

We see that the slope is inversely proportional to the square of the linewidth. We
therefore seek the narrowest possible resonance lines to serve as our peak-locking

frequency standard.

4.2 The Dual-Laser Setup

Now that we have developed an understanding of various optical components and
techniques, we can design an effective laser stabilization system. Of the methods
previously described, saturated absorption would provide the tightest lock since its
linewidth is the narrowest (~1-10 MHz). Unfortunately, the closest atomic line to
the 674nm strontium transition is 10 GHz away - too far for locking. The Fabry-
Perot cavity described above can provide decently narrow linewidths (33 MHz), but
is sensitive to very small temperature and pressure fluctuations.

One method to circumvent the negative aspects of Fabry-Perot cavities is to use a
dual-laser setup [81], as illustrated in Fig. 4.8. Since we know that atomic transitions
will not drift due to changes in temperature or external pressure, they can be used
as a fixed reference to stabilize the length of the cavity. The first laser is locked to
the strongest nearby Iodine transition at a frequency of 444973.5 GHz [82]. This
locked laser is then directed through the Fabry-Perot cavity. High voltage is applied
to the piezo so that the incident light is resonant, and a feedback loop locks to the
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Figure 4-8: Schematic of the dual-laser setup. Laser #1 is locked to an I cell,
stabilizing its frequency 200 GHz away from the 674nm strontium transition. This
stabilized beam is used to fix the length of the Fabry-Perot cavity by including the
mirror piezo in the electronic feedback loop. Laser #2 can then be locked to the
stabilized cavity and address the 674nm line.

transmission signal (and hence locks the length of the cavity). Should the temperature
or pressure change, the piezo will expand or contract to offset the effect. With the
length stabilized, a second laser can be directed through cavity, peak locked using a

second set of feedback electronics, and sent to the ion trap.

4.3 Laser Construction

We now seek to construct a laser system following the plan outlined in Section 4.2.
This section will detail the process of building the ECDLs and optical breadboards

necessary to realize the dual-laser design.

4.3.1 Building an ECDL

Two extended cavity diode lasers (ECDLs), tuned to 444779.0 GHz and 444973.5
GHz, are required for this system. An ECDL has three important subassemblies: the
baseplate and housing, the diode mount and collimating lens, and the grating/piezo

fixture. We expect the output of the ECDL to provide a collimated beam that lases
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in a single mode, maintains a stable power amplitude, and has a linewidth on the
order of 1 MHz. I shall now describe the construction of an ECDL fashioned from

readily available components.

Baseplate and Housing

The baseplate and housing of the ECDL provide a closed box for the laser diode
and optics. This creates a contained environment for temperature stabilization of
the diode as well as vibrational and electrical isolation. Both the baseplate and clear
acrylic housing were custom-designed to fit our purposes. Two photographs of the
laser box can be seen in Fig. 4.9.

The baseplate consists of two machined pieces of 1/4” steel. The first piece forms
the bottom of the box and includes mounting slots. A second, smaller piece sits 1/8”
above the bottom and provides a platform for the laser diode, collimating lens, and
grating/piezo/kinematic mount assembly. Heat-sink grease is applied to a thermo-
electric cooler (TEC, ThorLabs TEC3-2.5), which is then clamped between the two
steel plates. This allows us to vary the temperature of the laser box by changing the

current applied to the TEC element. By varying the direction and amplitude of the

current, baseplate temperatures of 10-40°C can easily be reached.

Figure 4-9: Photographs of the ECDL baseplate and housing. Laser optics are
mounted on a small steel plate secured with teflon screws. A thermistor/TEC pair
(not shown) are mounted on the baseplate to provide active temperature stabilization.
The holes are sized to accept BNC bulkheads for internal electrical connections.
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When a TEC is paired with a thermistor, the setup can be used for active tem-
perature stabilization. A PID feedback loop uses the thermistor to determine the
temperature of the baseplate and the TEC to correct for any changes. We used a
Wavelength Electronics PID-1500 Temperature Controller to set the desired temper-
ature, read the thermistor voltage, and supply the appropriate current to the TEC.
Temperature stability was observed to be 5 mK over a 5 minute period. Now that

we have a stabilized enclosure, we can mount the diode and collimating lens.

Diode Mounting and Collimation

We used a 5 mW Sanyo DL3149-056 diode to produce our 674nm light. The diode was
secured in a mount (ThorLabs LMIF) and affixed to the steel platform. A low-noise
current controller (Wavelength Electronics MPL-250) was used to power the diode,
and the injection current was monitored using a digital multimeter.

Light emitted from the diode is highly divergent, so a collimating lens (ThorLabs
C390TM-B) is critical for producing a useful beam. The lens is mounted in a precision-
machined aluminum holder. For optimal performance, the lens must be positioned
exactly on axis with and one focal length away from the point laser source.

To achieve the correct positioning, the lens holder is temporarily attached to a
3-axis mechanical stage with an extension arm. This allows the lens position to be
accurately controlled in all directions until proper collimation is attained. A well-
collimated beam should exhibit symmetry, limited spatial expansion, and a tightly
focussed spot at the center of an elliptical envelope. When everything is optimized, the
lens mount is secured to the diode mount using a fast curing epoxy. The collimating

process is detailed in Fig. 4.10.

Grating Feedback and Tuning

Once a collimated beam is attained, it can be reflected off a diffraction grating to form
an extended cavity. For this setup, we used a ThorLabs GR13-1850 ruled reflective
grating with 1800 grooves/mm and a 500nm blaze. In order to stabilize the frequency

using the ECDL configuration, the 1st order reflection from the grating must be
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Figure 4-10: Photographs of the collimation process. Top Left: beam profile after
coarse positioning of the lens. Interference fringes, a large size, and asymmetries
indicate poor collimation. Top Right: changing the distance between the diode and
lens produces a slightly more focussed beam, though the interference and asymmetries
are still present. Bottom Left: better horizontal and vertical positioning eliminate
many of the problems, but the spot size is still large. Bottom Right: small changes
to each degree of freedom lead to a well-collimated beam.

directed back to the diode. To accomplish this, we first position the grating coarsely
on the baseplate platform. When the angle is set properly, two spots should be visible
on the grating: one is the main zeroth order reflection, while the other results from
1st order retroreflection off the diode facet. We then use the knobs on the kinematic
mount to bring the two spots together, ensuring optimal feedback to the diode. A
power meter at the ECDL output can be used to detect when the two beams are
exactly coaligned. Small changes can now be made to the grating position (using

the kinematic knobs or piezo) to provide frequency tuning up to several hundred
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Figure 4-11: Characteristic Power-Current curve for the Sanyo DL3149-056 laser
diode. The lasing threshold is at 28.3 mA, and the slope efficiency is .15 mW /mA.

gigahertz.

Strong feedback can be best detected around the lasing threshold. Without feed-
back, the Sanyo diode threshold current was 30.5 mA. As the feedback was strength-
ened and optimized, the threshold current was pushed down to 28.3 mA. Fig. 4.11
shows the characteristic Power-Current curve for the DL3149-056 diode. The thresh-
old and slope efficiency (.15 mW/mA) are both within manufacturer specifications.
With the ECDL behaving exactly as expected, we are ready to use the Fabry-Perot

cavity and lodine absorption cell to further stabilize the frequency.

4.3.2 Optical Breadboard Setups

The block diagram in Fig. 4.8 gives a broad overview of the dual-laser setup. In this

section, I will present more detailed plans and pictures of the optical breadboards.

Locking to a Doppler-broadened Iodine Transition

In order to lock to a Doppler-broadened transition, we first must tune the ECDL

to the proper frequency by adjusting the diode temperature, injection current, and
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Figure 4-12: Photograph of a laser stabilized to a Doppler-broadened Iodine line. An
oven is used to heat the gas cell to increase the absorption, and a balanced detector is
helpful for eliminating background environmental effects. The stabilized laser beam
is exported through the fiber coupler to stabilize the length of the cavity in the second
laser system.

grating position. Once this is achieved, the beam can be passed through an Iodine
absorption cell. A photodetector on the far side of the cell monitors the transmission

signal, which will drop when the laser frequency is on resonance with the atomic line.

A picture of the laser setup can be seen in Fig. 4.12. The output beam from
the ECDL first travels through a periscope to bring its height up to the level of the
optics. The beam passes through a beam splitter, sending 70% of the power to the
fiber coupler. The remaining 30% is split once more, with half traversing the Iodine
cell and half impinging directly on the balanced detector. Typical operating powers
are 2 mW out of the ECDL, 1.4 mW into the fiber coupler, and 300 ©W through the

absorption cell.
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Locking to a Saturated-Absorption Iodine Transition

Saturated absorption setups make use of counterpropogating beams to give a very
narrow signal at the transition frequency. If we are able to observe the transition, we
should be able to improve the lock stability by several orders of magnitude. Fortu-
nately, we only need to redesign the part of the setup following the 70:30 beamsplitter.

Pictures and schematics can be seen in Fig. 4.13.

+ L‘
PBS Cube

Figure 4-13: Pictures and schematic of a saturated-absorption setup. Left: photo-
graph showing the ECDL, 70:30 beam splitter, quarter wave plate (\/4), and Iodine
oven. Top Right: photograph showing the polarizing beam splitter cube (PBS) and
balanced detector. Bottom Right: schematic of the saturated absorption arrange-
ment.

Light from the ECDL is incident on a polarizing beam splitter cube (PBS), which
reflects S-polarized light and transmits P-polarized light. Since most of the light
emitted from a laser diode is S-polarized, most of the beam is reflected towards the
absorption cell. The small P-polarized part of the beam is transmitted and directed

towards one of the photodiodes on the balanced detector.
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The reflected light passes through a quarter wave plate (A/4), changing the po-
larization from linear to circular. The beam passes through the gas cell, reflects off a
mirror, and counterpropogates back through the cell. After passing through the A/4
plate, the beam now exhibits P-polarization, and is transmitted through the PBS
cube to a photodiode. In practice, we are able to pass ~ 550uW of power through
the Todine cell.

Locking to a Length-Stabilized Fabry-Perot Cavity

The second laser system is designed to lock to a length-stabilized Fabry-Perot cavity.
Length stabilization is achieved via a feedback loop and a frequency reference, as
detailed in Sec. 4.2.

A schematic of the laser setup is shown in Fig. 4.14. The ECDL output beam is
first passed through a 90:10 beamsplitter, sending the majority of its power to the ion
trap. This leaves 200 uW of power for stabilization and frequency measurement. The
beam passes through a 50:50 beam splitter so that the wavelength can be monitored,
and 100 W of power are sent through the cavity. The absorption signal is detected
with a photodiode (PD1).

To hold the length of the cavity constant, we import an iodine-stabilized beam
from the first laser system. The beam enters through a fiber, passes through the
cavity travelling to the right, and is detected by a second photodiode (PD2).

This completes the design and construction of the two laser systems. We can now

perform our locking and observe the stability.

4.4 Stability Results

4.4.1 Side-locking to a Fabry-Perot Cavity

As an initial test, we seek to side-lock to a Fabry-Perot resonance and measure the
frequency stability. During this phase of the experiment, the cavity is not actively

stabilized, and is susceptible to temperature and pressure fluctuations. Frequency
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Figure 4-14: Schematic of a laser system locked to an iodine-stabilized Fabry-Perot
cavity. BS=Beam Splitter, M=Mirror, FC=Fiber Coupler, PD=Photodiode. See
text for details.

instabilities often exhibit two timescales: short term (t<1s) and long term (t>5m).
Short term jitters are generally dependent upon the sensitivity of the lock; steeper
resonance signals will improve the feedback loop’s response, and the short-term in-
stabilities will decrease. Long term frequency variations are usually related to a
systematic drift caused by environmental factors. Thermal expansion, optical path
length changes, and mechanical instabilities are three slowly-varying effects that will

produce noticeably worse laser performance.

We use a Toptica WS/7 wavelength meter to monitor the laser frequency. When
locked, we observe short-term frequency drifts of 2-3 MHz/s and a long-term fre-
quency drift of 50 MHz/5m. Clearly, this is not stable enough to observe the effects
detailed in Chapter 3. However, it is useful to take inventory of the drift sources
and contributions. Recall that the invar cavity spacer has a coefficient of thermal

expansion of 1.6 ppm/°C. As we found in Sec. 4.1.4., a .1°C change in temperature
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leads to a 65 MHz change in frequency. Pressure also plays a significant role; changes
in pressure cause the optical path length between mirrors to shift. Fluctuations of
10 Pa (1/10000 atm) are enough to induce 20 MHz of drift. Other effects contribute
minimally to laser instability; electronic noise, for example, accounts for ~10 kHz of
drift. From this analysis, it becomes apparent that an actively stabilized cavity is

necessary to improve the performance.

4.4.2 Side-locking to Iodine Transition

We now investigate the stability of a laser side-locked to an Iodine transition. The

frequency drifts observed over a 5 minute period can be seen in Fig. 4.15.
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Figure 4-15: Frequency drifts of a laser side-locked to an Iodine transition.

For the side-locked laser, we observe short-term drifts of 10-15 MHz and long-
term drifts of 20-30 MHz. This compares nicely with our expectations. Since the
linewidth of a Doppler-broadened iodine line is much wider than that of a Fabry-
Perot cavity fringe, we would predict the short term jitter to be larger when locking
to the atomic transition. However, since the atomic line does not drift over time,
we would expect the long-term stability to be better than when locked to a cavity

resonance. Nevertheless, there is still much room for improvement.
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4.4.3 Peak-locking to Iodine Transition

Since peak-locking techniques are insensitive to offset or amplitude variations in the
resonance signal, we expect the long-term behavior to be more stable than side-
locking. Short-term behavior is more difficult to predict, however, since the slope of
the error signal depends directly on the lock-in amplifier gain settings. We again take

a b minute frequency measurement, the results of which can be seen in Fig. 4.16.
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Figure 4-16: Frequency drifts of a laser peak-locked to an Iodine transition.

For the peak-locked laser, we observe short term drifts of 2-3 MHz and long-term
drifts of less than 10 MHz. This is quite a nice improvement, as it approaches the
frequency accuracy of the wavemeter itself. However, the instabilities of the peak-
locked laser are still 3 orders of magnitude too large. We must therefore seek an

alternative method for improving the setup.

4.4.4 Locking to a Saturated Absorption Line

Recalling the result of Eq. 4.30, we found that the stability of the peak-locked laser
should scale inversely with the square of the linewidth. Thus, we wish to use the
narrowest possible line as our frequency reference. Since saturated absorption lines

are typically 2 orders of magnitude narrower than Doppler-broadened transitions, we
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would expect a 4 order of magnitude improvement in the stability if we could lock to
such a line.

Unfortunately, after setting up the optics as described in Sec. 4.3.2, no saturated
absorption signal was observed. Even with the 70:30 beam splitter removed and
all 2 mW of power pumped through the absorption cell, the sharp resonance could
not be found. In all likelihood, this is a direct result of molecular structure. Satu-
rated absorption methods are only successful when the transition is closed. However,
molecules contain a large number of closely-spaced rotational and vibrational levels.
As a result, the majority of lines cannot be saturated, and the process fails. To be
complete, all other Iodine transitions addressable by the laser diode were checked,

but the resonance signal was never seen on any line.

4.5 Summary

This chapter has described a first attempt at building a laser system stable enough
to observe the effects described in Chapter 3. We found that an invar Fabry-Perot
cavity without active stabilization led to significant drifts in the laser frequency.
While the plan to fix the length of the cavity using an iodine-locked laser was a
promising idea, the stability of the reference laser was observed to be 10 MHz over 5
minutes - several orders of magnitude too large. Since saturated absorption methods
proved unsuccessful, we have effectively exhausted the possibilities of this setup. To
realize further improvement, we must consider a completely new laser stabilization

architecture.
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Chapter 5

A Monolithic Red Laser

This chapter will present a new approach to solving the laser stability problems we
have witnessed in Chapter 4. As we have seen, fixing the length of a Fabry-Perot
cavity to an Iodine transition gives a large instability of 10 MHz over 5 minutes. Thus,
we return to the problem of eliminating temperature and pressure fluctuations in the
cavity’s environment. Additionally, recall that in the previous setup there was a small
jitter caused by fast electronics in the feedback loop. We should seek to eliminate this
effect as well. As always, we would like to achieve as narrow a linewidth as feasible.
To address these issues, we have designed and constructed a monolithic laser
stabilized using resonant optical feedback and slow electronics. The laser is termed
monolithic because the ECDL, beam shaping optics, and cavity are all affixed to a
baseplate contained in a hermetically sealed, temperature controlled aluminum box.
The vacuum-sealed box has a footprint of less than 1 square foot, and permits much
better stabilization of the external environment than was previously attainable.
Resonant optical feedback techniques circumvent the use of fast electronics to lock
a laser to a cavity [83]. In these setups, there is strong feedback to the diode only when
the lasing frequency coincides with a cavity resonance. At this frequency, the feedback
creates a small bump in the laser gain profile. Since the lasing action takes place at
the peak of the gain profile, resonant feedback forces the laser to automatically lock
itself to the cavity resonance. Slow electronics are still necessary to compensate for

any long-term drifts, but the laser can be expected to stay optically locked for several
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minutes without any electronic feedback.

The structure of this chapter is similar to the structure of Chapter 4. Here, I
will present the design for the monolithic laser (monolaser) and detail the special
optical components at the heart of the design. I will then describe the construction,
frequency tuning, and operation of the monolaser. Finally, I will show laser stability

results. Experimental results using the monolaser will be presented in Chapter 6.

5.1 Monolaser Design

This section introduces a monolithic laser design that should satisfy our stability
requirements. I will first discuss the design as a whole and the placement of the
optical components. This will be followed by an in-depth theoretical discussion of the

triangular Fabry-Perot cavity used to stabilize the diode.

5.1.1 Optical Breadboard Setup

The phrase “optical breadboard” here is somewhat of a misnomer. All of the optical
components in the monolaser are secured to holes drilled in a 1.5” inch thick aluminum
baseplate. Since the placement is designed prior to machining, the arrangement
can be optimized without being restricted to the typical 17 optical breadboard grid.
Additionally, since everything is affixed to a single baseplate, we avoid stresses and
drifts caused by mismatches in the coefficient of thermal expansion across the system.
Correcting for the expansion of the aluminum baseplate is a task easily handled by
piezo-electric transducers and feedback loops.

Our monolaser design, inspired by K. Hayasaka [84], is shown in Fig. 5.1. Laser
light is emitted from a diode, collimated with a lens, and reflected off a grating for pre-
stabilization. This forms a simple ECDL configuration identical to the one described
in Chapter 4. The collimated beam then passes through a set of cylindrical lenses,
transforming the beam profile from elliptical to circular. A standard plano-convex
lens is used to match the mode of the Fabry-Perot cavity for optimal transmittance,

while a second lens is used to re-collimate the beam before exiting the monolaser.
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Figure 5-1: Optical layout for the monolithic laser. M=Mirror, CL=Cylindrical Lens,
L=Lens, PZT=Piezo, GP=Glass Plate. See text for details.
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We use a glass plate to reflect 4% of the power back through the cavity, off the
grating, and into the diode. This allows us to provide the laser with feedback for the
optical lock. Feedback will only be provided when the laser frequency matches a cavity
resonance, since transmittance through and reflection back cannot exist otherwise.
However, matching the cavity resonance is not a sufficient condition for attaining
stable locks; we must also be mindful of the feedback phase. Consider the case where
the back reflection is 7 radians out of phase with the outgoing light. As the beam
retraces its steps, it will cause destructive interference, and the diode will see no
feedback. Therefore, we need to ensure that the feedback phase differs from the
outgoing phase by an integer multiple of 27w. To accomplish this feat, we attach a
piezo to one of the monolaser mirrors (labelled PZT-¢). Changes to the piezo length
allow us to change the total path length between the diode and glass plate. Thus, by

scanning the piezo over a small range, we can optimize the feedback phase.

The V-shaped Fabry-Perot cavity generates the resonance signal for the optical
lock and performs spatial filtering of the laser light [85]. As we will soon see, we
can arrange the setup so that only a Gaussian beam (TEMy, mode) is transmitted
through the cavity. This is quite beneficial, since Gaussian beams are well-described
by standard optical formulas, are easy to manipulate, and can be fiber coupled very

efficiently.

The filter cavity has 3 mirrors; two are on axis with the incoming laser beam with
reflectivities of 99%, while the third is a purely reflecting curved mirror attached to
a piezo at the far end of the cavity (see Fig. 5.2). As before, changing the voltage
applied to the piezo allows us to vary the length of the cavity. Using Eq. 4.25, we
calculate the theoretical finesse of the cavity to be 300.

We now have enough information to characterize the effect of the optical lock. As
demonstrated by Laurent et. al. [86], the linewidth of a diode laser optically locked
to a cavity will be reduced by a factor of P2, where P is the ratio of ECDL finesse to
cavity finesse. Performing the calculation, we find that P? ~ 10*. Given an ECDL
laser linewidth of ~1 MHz, the monolaser should output a beam with a linewidth less

than 10 kHz.
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Figure 5-2: Photograph of the filter cavity.

5.1.2 The Filter Cavity

Since the filter cavity forms the heart of the monolaser, its physics deserve de-
tailed attention. The cavity accomplishes two tasks: resonance signal production
and Gaussian-mode selection. Generation of the resonance is straightforward, and
the theoretical explanation is identical to that given in Sec. 4.1.4. Selection of the
TEMgo mode is possible because the various modes of propagation exhibit different

resonant frequencies [87].

To understand why this is the case, we must first develop a mathematical de-
scription of the modes inside the cavity. In general, the modes of propagation are
Hermite-Gaussian functions [88]. These functions are orthonormal, complete, and

satisfy the paraxial Helmholtz equation.

Let us define a rectangular coordinate system such that Z points axially along
the beam in the cavity, and & and ¢ point radially. We may now write the Hermite-

Gaussian function at any point in space [89):

2 2

. T [ Az
UK,m(iL'aya Z) 2,m €XP ikz — ik QR(Z) +Z(£+m+ )tan (7T’LU%):| (5 )

Here I have explicitly separated the amplitude and phase of the mode (the reader is
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directed to Ref. [89] for the complete functional form and derivation). In Eq. 5.1,
Ay, represents the mode amplitude, R(z) is the radius of curvature of the wavefronts,
and wy is a parameter specifying the beam width. We notice immediately that the
phase is dependent upon the mode numbers (¢,m). Using Eq. 5.1, we can find the

phase at any point along the cavity axis as a function of ¢ and m:

$(0,0,2) =kz — ({+m+1)tan™" (ﬁ) (5.2)

2
TW;

In order for the resonator to transmit light, the beam must be in phase with itself
after every pass around the ring. This condition demands that the accrued phase be
an integer multiple of 27. For a cavity with a round-trip path length L and a starting

coordinate zp, we can write:

2mn = kL — (0 +m +1) {tan_l (A(Zo—tL)) — tan”! (A_Zg)} (5.3)

TW;

where n = 0,41, +2.... Substituting for £,

2mn = QWCVL —(l+m+1) [tan_l ()‘(Zo—tL)) —tan~* (/\—Zgﬂ (5.4)

and rearranging,

ne c 1 (AMzo+ L) 1 [ Ao
= " 1) |tant [ 202 _pant [ 22 .
Vi = 7 + 27TL( +m+1) [ an ( — ) an (mug)} (5.5)

We can now clearly see that the resonant frequencies of the cavity, vy, », are different
for the various (¢, m) modes. By altering the length of the cavity (and hence its
resonant frequency), we will be able to select only the TEMgy mode. All other modes
will be non-resonant and rejected from the cavity. As a check, consider the (0,0)
mode propagating through a standard 2-mirror cavity with a return trip path length
of L = 2dn (n here is the index of refraction). Substitution into Eq. 5.5 gives a
resonant mode spacing of ¢/2dn, the exact result found in Eq. 4.18 for the free

spectral range of a non-confocal cavity.
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5.2 Construction of the Monolaser

5.2.1 Baseplate and Housing

As mentioned above, all of the monolaser components sit on a 1.5” thick aluminum
baseplate. The baseplate is designed to accommodate optical mounts while keeping
the laser beam at a level height. As a result, a complex pattern of holes and grooves
must be machined in the baseplate. We used a CNC mill to fashion the part from a
solid 8” x 8” x 1.5” piece of aluminum stock. A photograph of the baseplate is shown

in Fig. 5.3.

Figure 5-3: Photograph of the monolaser baseplate.

This entire baseplate is housed in a 10” x 10” vacuum-tight box. The walls are
constructed from 3/8” aluminum and welded together to prevent leaks. A small turbo
pump is connected to the box, and pressures as low as 8 x 10~® Torr can be reached
in less than an hour. The housing contains four 1/2” diameter posts on which the

baseplate sits. As in the ECDL design presented in Chapter 4, the baseplate hovers
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above the bottom of the housing, thereby providing electrical and vibrational isolation
from the external environment. The completed baseplate and housing, with all of the

optical components attached, is shown in Fig. 5.4.

Figure 5-4: Photograph of the completed monolaser.

As before, a TEC/thermistor arrangement is used to actively stabilize the tem-
perature inside the housing. Two TEC elements (ThorLabs TEC3-2.5) are coated
with heat-sink grease and clamped in place between the baseplate and housing. A
thermistor embedded in the baseplate provides a temperature reading to the control
unit (Toptica DTC 110) that alters the TEC current accordingly to stabilize the tem-
perature. Since the monolithic design is inherently resistant to change, small changes

in the temperature setpoint will often require 30-60 minutes of equilibration time.

5.2.2 Diode Mounting, Collimation, and Frequency Tuning

For the monolaser, we begin by building an ECDL. The diode and collimating lens

are mounted in precision-machined pieces of aluminum and aligned following the
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procedure introduced in Sec. 4.3.1. The result is a well-collimated beam .17 above
the top of the baseplate. As before, the beam is then directed towards a diffraction
grating, providing feedback to the diode. Rather than use a kinematic mount, the
grating is secured to a trapezoidal metal piece with an embedded piezo for fine-
tuning. Finely-threaded screws are used to control the grating position along all
three directions.

At the start of the frequency tuning and feedback process, the screws are pre-
tensioned to allow for adjustment in either direction. The collimated laser light
is reflected off the grating, and the grating position is adjusted until the 1st order
reflection is sent back to the diode. The position is then tweaked to give the maximum
power output and lowest threshold.

After feedback optimization, the frequency of the laser is then measured. In all
likelihood, the lasing frequency will not be the one desired. To fix this, the grating
position must be delicately moved and feedback recaptured. This process can be
iterated until the proper frequency is attained. Should this prove impossible, or should
the mode be unstable, the temperature setpoint can be adjusted so that previously

inaccessible modes can become usable.

5.2.3 Transmission Through the Filter Cavity

Two conditions must be met for optimal transmission through the cavity: the laser
frequency must be resonant with the cavity TEMy, mode, and the beam must be
well-aligned and mode-matched. To realize good transmission, we first scan the cavity
piezo. This should give a series of peaks corresponding to transmission of the various
allowed cavity modes. At this point, the cylindrical lenses should be adjusted so
that only the TEMy, mode peak is transmitted. By re-tuning the alignment, the
transmission can be optimized.

Fig. 5.5 shows the results of locking the laser to the cavity. We have successfully
tuned the cavity so that it transmits only the Gaussian mode and rejects all higher
order modes. Once we observe the strong Gaussian transmission, we are ready to

employ electronic feedback to stabilize the laser over the long term.
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Figure 5-5: Transmission through and reflection from a well-aligned filter cavity. Left:
transmission spectrum showing a Gaussian profile. Right: reflection from the cavity,
showing the higher-order rejected modes.

5.2.4 Feedback and Operation

After the proper frequency and alignment are achieved, we wish to lock the laser
frequency to the cavity. As noted above, we require the lasing frequency to be resonant

with the TEMj, cavity mode and the feedback phase to be an integer multiple of 27.

Ordinarily, the transmission through a cavity will exhibit a Lorentzian lineshape.
In this setup, however, the transmission curve is greatly modified by the optical
feedback. As shown in Fig. 5.6, the transmission rises sharply at some critical point,
slowly climbs to a maximum, and falls to zero at a second critical point. Typically,
the width of the transmission curves are of order 100 MHz, which is considerably
larger than the FWHM of a high-finesse cavity peak.

As shown by Ohshima and Schnatz, the optimal conditions on frequency and
phase are met when the transmission curve is symmetric [90]. Using this result, we
can stabilize both the frequency and phase by using electronic feedback. Just as we
peak locked to the Iodine transition in Chapter 4, we can peak lock the phase to the
top of the transmission curve in this setup. Since we can start the lock at any point

on the transmission curve, the locking range is several hundred MHz wide.

A lab-built software controller interfaces with an FPGA chip to simultaneously
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Figure 5-6: Filter cavity transmission spectrum with optical feedback. Left: the-
oretical spectrum, modelled after Fig. 2 in Ref. [90]. Three transmission curves,
each with a different phase, are plotted as a function of frequency. Since there is no
asymmetry to the center curve, the laser frequency is on resonance and the phase is
an integer multiple of 27. Right: experimental spectrum, obtained by sweeping the
grating over the locking range for three different phase values. The green curve is
symmetric, while the red and blue curves are oppositely antisymmetric.

lock the phase and frequency. A 10 kHz oscillator is used to dither the phase piezo
(PZT-¢), and a photodiode at the far end of the filter cavity monitors the transmis-
sion. This signal is sent to an on-board lock-in amplifier that detects the 1f feedback
and appropriately servos the piezo to compensate for drifts. This ensures that the
phase remains at an optimal value.

In order to lock the frequency, we employ 3f feedback. This takes the third
derivative of the transmission curve and sends the signal to another on-board lock-in
amplifier. Any asymmetries in the transmission curve will be detected by the third
derivative signal. To compensate, the feedback electronics servo the grating piezo
until the third derivative signal is symmetric. As a result, the laser is locked precisely
to the peak of the transmission curve where frequency and phase are optimal.

Once locked, the lasers remain stable for many hours. A spontaneous loss of lock
is rarely observed; usually, the lasers unlock themselves when we tune too far away
from the optimal frequency locking point. Although the frequency is tunable over a
range of a few hundred MHz, the best stability is achieved when the system is left

untouched. However, most of the red laser experiments demand sweeping the laser
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over some range to obtain data.

This problem can be solved by employing an acousto-optic modulator (AOM) in
a double-pass configuration [91]. An AOM makes use of sound waves at rf frequencies
to modulate the frequency of light passing through it. When an rf signal is sent to the
AOM, it induces an oscillation in a piezo-electric transducer. This vibration causes
sound waves to propagate through a crystal. Since the compression and rarefaction
of the wave changes the index of refraction, an incoming laser beam can be diffracted
by passing through the crystal. By conservation of energy and momentum, the light
exiting the AOM will have a frequency v + mf, where v is the incoming frequency,
m is the diffraction order (0,+1,42,...,), and f is the frequency of the sound wave.

To scan the laser frequency without touching the monolaser controls, we simply
vary the frequency of the AOM rf drive. However, since the diffraction is generated
by travelling sound waves, the diffraction angle depends on the input frequency. This
can be problematic for beam alignment and fiber coupling, since scanning the drive
frequency causes the beam to shift position. To circumvent this problem, we use the

AOM in a double-pass configuration (see Fig. 5.7).
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Figure 5-7: Schematic of an AOM in a double-pass configuration.

P-polarized light is transmitted through the PBS Cube, and a quarter wave plate
converts the polarization to circular. After passing through the AOM, the beam is
diffracted at some angle depending on the rf drive frequency. An off-center lens is
used to bend the beam and direct it towards a mirror. When the system is aligned so
that the beam reflects perpendicularly off the mirror, the laser will retrace its steps

back through the lens and AOM. After it passes through the quarter wave plate, the
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light will be S-polarized, and will be reflected by the polarizing beam splitter cube.
This beam will have a frequency v + 2 f since it has passed through the crystal twice.
Additionally, changes in the rf drive frequency will not change the final position of
the beam. As a result, this beam can be efficiently fiber coupled and sent to the ion

trap.

5.3 Monolaser Stability

Once the monolaser was constructed and operational, we took some frequency sta-
bility measurements. Following the convention established in Chapter 4, we used a
wavelength meter to monitor the instabilities over a 5 minute period (see Fig. 5.8).
From the plot, we see a short-term peak-to-peak instability of ~500 kHz and a long-
term drift of ~2 MHz. These results show that the monolaser is significantly more
stable than the previous red laser. However, these numbers only give an upper bound

on the frequency stability.
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Figure 5-8: Monolaser frequency stability over a 5 minute period.

The wavemeter itself is not accurate enough to resolve frequency deviations on

this order. To know the true stability of the red laser, we would require a more precise
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wavelength meter or a new method of measuring frequency instabilities.

In the meantime, we can improve our estimate somewhat by examining the per-
formance of the monolaser used to address the 422nm transition. As we have seen,
trapped strontium ions will fluoresce differently for different blue laser frequencies.
When we have only a few ions in the trap, the blue laser resonance becomes quite
narrow. Therefore, we can use the ion fluorescence signal as a gauge for locking the
frequency of the blue laser.

With the blue laser locked to the ion signal, we recorded the 5-minute stability by
monitoring the cavity piezo change. Converting this voltage into a frequency gives
the plot shown in Fig. 5.9:
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Figure 5-9: Blue monolaser frequency stability over a 5 minute period when locked
to the ion fluorescence signal.

Although there is considerable noise due to photon counting statistics, ion motion,
and other effects that impact fluorescence, we were able to measure a frequency
instability of 1 MHz over a 5 minute period. Furthermore, in our experience, the red
monolaser has always given more stable frequency readings than the blue monolaser
(according to the wavelength meter). Thus, we can expect the red laser stability to be
notably better than 1 MHz/5 minutes. This figure is quite encouraging, and should

allow us to see the interesting effects discussed in Chapter 3.
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5.4 Summary

In this chapter, we have introduced our design for a monolithic red laser that outputs a
stable, Gaussian beam. By mounting the optical components on a single, thick piece
of milled aluminum and enclosing the setup in a temperature-controlled, vacuum-
sealed box, we were able to realize a stability of better than 1 MHz over 5 minutes.
We shall now use our stable monolaser to probe the trapped strontium ions and

witness the results.
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Chapter 6

Experimental Setup and Results

Now that the monolaser has been constructed, we can explore the physical phenomena
of depletion and quantum jumps as well as improve our estimate of ion temperature.
This chapter will describe the setup for these experiments and present our collected

data.

6.1 Ion Trap Setup

As we saw earlier, colder ion temperatures can be achieved by propagating the blue
laser along multiple directions at once. With this in mind, the lasers were placed as
shown in Fig. 6.1. The blue laser exits the fiber coupler and propagates diagonally
through the ion trap, cooling one degree of freedom. After leaving the ion trap, the
blue light is reflected from a hot/cold mirror, off a second mirror, and back through
the ion trap axially. This permits cooling along two directions simultaneously.

The red laser, coaligned with the blue, makes the same trip in reverse. The red
beam exits its fiber coupler, passes through the ion trap twice, and terminates at the
blue fiber coupler. Since the IR beam is not needed for cooling, it is sufficient to have
it pass through the trap just once. Along the axis of the linear trap, all three lasers
are coaligned.

We carefully kept track of beam waists to ensure that the lasers were focussed

to as small a spot size as possible at the center of the trap. The blue fiber coupler
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IR Laser

lon Trap

-—?—4 Blue Laser

Red Laser

Figure 6-1: Schematic of the ion trap setup. The blue and red lasers propagate
diagonally and axially, and the IR laser only propagates axially. M=Mirror, H/C
M=Hot/Cold Mirror, L=Lens.

(ThorLabs FC230-A) was placed 10 cm away from the trapping region, corresponding
to a spot size of 100 ym. We placed a lens at the far side of the trap to re-collimate
the expanding blue beam before it is propagated axially. For the red beam, a lens
was placed between the fiber coupler (ThorLabs FC230-B) and the trap, reducing the
spot size to 80 pm.

Typically, the maximum operating powers are 250 W for the blue, 500 W for
the IR, and 280 uW for the red. However, since these blue and red powers are both
far above saturation, they will need to be reduced if we hope to see any meaningful
data.

Now that the lasers have been set up, we can begin collecting data. We simply
need to trap ions and adjust the laser powers and frequencies to look for the desired

effects.
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6.2 Depletion

As was explained in Chapter 3, we expect to see depletion when the red laser is
consistently able to excite the S — Ds/y transition with little competition from the
blue laser. To begin our search for depletion, we loaded a cloud of ions and reduced
the blue power to 100 pW. Almost immediately, the hints of a depletion signal were
seen. By careful adjustment to the red laser position, we were able to obtain the
signal shown in Fig. 6.2:
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Figure 6-2: Depletion in an ion cloud. At ¢t = 30 s, the red laser was turned on,
causing a drop in the number of photon counts. At t = 225 s, the red laser was
turned off, and the fluorescence returns to its previous value.

At the start of the scan, the red laser is blocked to establish a baseline value of
ion fluorescence. After 30 seconds, the red laser is sent through the trap, depleting
the S — P transition and causing a dip in the 422nm photon signal. At ¢ = 225 s,
the red laser is blocked once again to ensure that the ion signal returns to its previous
level.

We found that the strength of depletion remained relatively constant over a tuning
range of several hundred MHz. This is an artifact of Doppler broadening of the red

transition. In a hot cloud of ions, temperatures are typically of order ~1000 K,
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giving a Doppler-broadened FWHM of ~1 GHz. Thus, the red laser frequency can
be significantly detuned, but still induce depletion in a cloud.

Clearly, we need to find the red line with much more precision if we are to perform
further experiments. To reduce Doppler-broadening effects, we instead loaded a cold,
crystallized chain of ions. Since typical crystal temperatures are less than 1 K, we
expect the Doppler-broadened linewidth to decrease by at least 2 orders of magnitude.
Finding depletion in this setup allows us to refine our red laser frequency placement.

With the laser set at the same frequency as in Fig. 6.2, we loaded a chain of ions
to hunt for depletion. Not surprisingly, no depletion signal was seen. By tuning the
laser across a wide range and observing the fluorescence, we were able to find the
transition 200 MHz lower than our starting point. Data showing the depletion signal

in a crystal can be seen in Fig. 6.3.
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Figure 6-3: Depletion in an ion crystal. In this plot, the red laser was blinked on and
off for 10 seconds each.

For this experiment, the red laser remained off for the first 10 seconds to again
establish a fluorescence baseline. The red laser was turned on for the following 10
seconds, and the depletion is evident. This process was repeated dozens of times, five
cycles of which are shown in the plot.

The fact that we found depletion in a crystal is an encouraging result. This
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demonstrates that we have found the transition whose linewidth is only a few MHz,
and that our physical theory describing depletion is accurate. We are now ready to

reduce the red power and search for quantum jumps.

6.3 Quantum Jumps

From the numerical solution and Monte-Carlo simulation presented in Sec. 3.3.2, we
expect to see quantum jumps when the blue Rabi frequency is 10 MHz and the red
Rabi frequency is several kHz. Since we know the linewidth, saturation intensity,
and spot size of the blue laser, we can use Eq. 3.2 to determine the required power.
Calculation gives that 5 W of blue power focussed to a 100 pum spot corresponds
to a Rabi frequency of 10 MHz. Similarly, a red Rabi frequency between 2 kHz and
40 kHz requires a red laser power of .08 uW to 30 uW focussed to an 80 pum spot
size. We chose to use 5 W of red power to look for quantum jump effects, giving
Qyeq = 16 kHz.

To begin, we loaded a cold chain of 3 ions. At first, we kept the red laser at high

power and tuned the frequency until a depletion signal was seen. Once we verified that

x 10* Quantum Jumps with 3 lons
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Figure 6-4: Quantum jumps of 3 trapped strontium ions. In this experiment, .. =
10 MHz and ,.4 = 16 kHz.

99



we were on resonance, we turned the red power down to 5 W to observe quantum
jumps. A sample time-dependent scan is shown in Fig. 6.4.

Each ion exhibits the random loss of fluorescence that is the hallmark of quantum
jumps. Since there are three ions in the trap, Fig. 6.4 effectively shows the sum of
three individual quantum jump profiles. As expected, the ions hop fairly often since
our red Rabi frequency is approaching the low end of the depletion limit. Additionally,
we notice that the ions stay dark on average for 300-600 ms, in agreement with our
simulations.

Since we have three ions in the trap, we would expect there to be four discrete
levels of fluorescence, corresponding to 0, 1, 2, and 3 dark ions. By taking a histogram
of the number of counts at each fluorescence level in Fig. 6.4, we can directly verify

this assertion. This histogram is plotted in Fig. 6.5.

Discrete Quantum Jump Levels

Counts

2 3 4 5 6 7 8 9 10
Fluorescence (arb) " 104

Figure 6-5: Discrete quantum jump levels. By taking a histogram of Fig. 6.4, we see
the 4 expected fluorescence levels, representing 0, 1, 2, and 3 dark ions. Each of the
peaks are evenly spaced since each ion fluoresces with equal intensity.

When running this experiment, we can expect each ion to transition to the Dy,
state with some probability p. Thus, the probability of finding 1 dark ion is p, the
probability of simultaneously finding 2 dark ions is p?, and the probability of having
3 dark ions is p3. By applying simple statistical methods to the data shown in Fig.
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6.5, we can extract the transition probability p.

Of the 613 total events recorded in Figs. 6.4 and 6.5, 279 are at full fluorescence,
231 represent 1 dark ion, 83 represent 2 dark ions, and 20 represent 3 dark ions. By
dividing the number of counts at each level by the total number of counts, we generate
experimental data for p, p?, and p®. By taking the appropriate roots and averaging,
we find that p = .356.

Let us examine the quality of this experimental result. Applying this value of p to
the data, we would expect 289 counts at full fluorescence, 218 counts with 1 dark ion,
78 counts with 2 dark ions, and 28 counts with 3 dark ions. These numbers closely
match the experimental results presented above. If we recall the results of Poisson
counting statistics, we find that only the lowest fluorescence level lies more than one
standard deviation away from the expected value.

Additionally, we can compare this probability to theoretical predictions. As shown
in Fig. 3.4, when p = .356, (),.q = 8 kHz. Since the spot size of the red laser can easily
be several 10’s of um larger than the theoretical optimum, the red Rabi frequency
can range from 16 kHz down to 6.5 kHz. Thus, a measured value of .. = 8 kHz is

well within the expected bounds.

6.4 Temperature Measurements

6.4.1 Blue-broadened Regime

In addition to observing depletion and quantum jumps, we wish to accurately mea-
sure the temperature of our ions. As we saw in Chapter 3, sweeping the blue laser
gives an inaccurate upper temperature bound of 660 mK. To make a more precise
measurement, we must keep the blue laser at a fixed frequency (and therefore fixed
cooling) while sweeping the red laser.

We begin the process by again searching for a depletion signal. Once we have
confirmed that the lasers are on resonance, we simply scan the frequency of the red

laser and monitor the ion signal. As the red frequency is detuned from resonance, we
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expect the depletion effects to abate and the fluorescence to increase.

For our first iteration of the experiment, we set the blue power to 100 W and the
red power to 280 pW. This corresponds to a relatively large red power with a Rabi
frequency of 120 kHz. Holding the blue laser at fixed frequency, we scanned the red
frequency over a 40 MHz range by using the AOM. The captured fluorescence signal

from this scan is shown in Fig. 6.6.
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Figure 6-6: Frequency dependence of ion fluorescence in the high red power limit.

The results of the scan closely match the prediction shown in Fig. 3.6 Left. We see
that at the low frequency side of the scan, frequency has little effect on fluorescence.
At these points, the transition is saturated, and no further depletion can occur. As
the frequency is tuned off resonance, we regain the familiar Lorentzian-type tails.

As discussed in Sec. 3.3.3, we can recover the full line by decreasing the red laser
power. Using 10 uW of blue power and 50 uW of red, we took another 40 MHz scan
using the AOM (see Fig. 6.7).

Since the red power has been lowered, we can observe the full line. As expected,
the blue laser causes broadening of the transition, adding to the Doppler linewidth
of the ion. Since the blue broadening causes a Lorentzian lineshape and Doppler

broadening exhibits a Gaussian profile, we expect the scan to have a Voigt lineshape
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Figure 6-7: Frequency dependence of ion fluorescence in the low red power limit. The
red line is a fitted Voigt function, giving a Lorentzian linewidth of 23 MHz and a
Gaussian linewidth of 6 MHz.

(i.e. a convolution of Lorentzian and Gaussian).

With this in mind, we fit the data in Fig. 6.7 to a Voigt function, allowing us to
extract a Lorentzian and a Gaussian linewidth. From the fit, we find that the blue
laser broadens the transition by I' = 23.2 MHz, consistent with our expectations. As
for the Gaussian component, we find that ¢ = 6.3 MHz. Plugging this value into
the Doppler broadening equation, we calculate an ion temperature of 35 mK. This

represents a significant improvement over our previous upper bound of 660 mK.

This result is nearly three orders of magnitude larger than the Doppler cooling
limit. We suspect that there are two primary contributions to ion temperature.
The first relates to our setup: since we only cool two degrees of freedom, we can
never expect to reach the Doppler limit. The second contribution is likely excess
micromotion, which can be reduced by better compensation.

Once the micromotion has been abated, the ion temperature will necessarily drop.
However, we quickly move beyond the limit where the Voigt fitting procedure gives
useful results, since the Lorentzian lineshape will begin to dominate the Gaussian.

We therefore need to develop a new methodology to probe the red transition without
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broadening it. By implementing pulse sequences, we will be able to move to the

resolved sideband regime and more accurately measure colder temperatures.

6.4.2 Resolved Sideband Regime

Sidebands can never be resolved when the red transition is broadened by the blue
laser, since the broadening is ~20 times larger than the sideband spacing. Therefore,
if we hope to observe sidebands and extract cold ion temperatures, the blue laser
must be turned off whenever we irradiate the ion with 674nm light.

To accomplish this, we use pulse sequences to precisely control the delivery of laser
light to the ion trap. At the start of the sequence, the blue laser is used to cool the
ions for 10 ms while the red laser remains off. After 10 ms, the blue laser is turned
off and the red laser is turned on for 10 ms. At ¢t = 20 ms, the red laser is turned off
and the cycle begins anew.

Should the red laser excite a transition, there will be a drop in fluorescence when
the blue laser turns on. This drop is a direct result of depletion, and should be
observable with a photon counter. As before, we expect the strength of depletion to
increase on resonance and subside as the frequency is detuned. However, due to the
presence of sidebands, we expect dips in fluorescence when the detuning is an integer
multiple of the secular frequency.

Our procedure is as follows. We start the pulse sequence at some red AOM
frequency and monitor the number of photon counts. We iterate the sequence 50
times and sum the total number of counts in order to build up statistics. Then, the
red AOM frequency is incremented slightly and 50 more pulse cycles are run. In this
way, we expect to observe the red spectrum without being broadened by the blue
laser.

The results of this scan are shown in Fig. 6.8, along with a fit to the data. We
see that the two sidebands are both spaced 650 kHz away from the carrier, consistent
with our expectation of the secular frequency. Furthermore, as we increase the secular
frequency by tightening the trap potential, we observe an increase in the sideband

spacing.
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Figure 6-8: The 674nm transition spectrum with resolved sidebands. From the fitted
Lorentzians, we observe an equal spacing of 650 kHz.

Additionally, we see that the amplitudes of the two sidebands are approximately
equal. Thus, we need to use Eqs. 3.7 and 3.8 to determine the number of motional
quanta (m). By taking the ratios of the fitted peak amplitudes, we find that (m) =
143%92. If we then plug this value of (m) into Eq. 3.6, we can calculate an ion
temperature of 6.853 mK. Given that we only Doppler cool along two directions and
that there are still visible traces of micromotion, it should be possible to cool the ions

further in future experiments.
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Chapter 7

Conclusion

In this thesis, we have explored the design and construction of two laser systems
to probe the 674nm transition of ®8Sr™ in a linear Paul trap. Initial experiments
showed that the laser stabilization provided by a low-finesse Fabry-Perot cavity was
an unsuitable 50 MHz over 5 minutes. As a result, we designed and built a dual-laser
setup to stabilize the cavity to an Iodine transition. Although a variety of different
locking methods were explored, the best stability observed was 2-3 MHz over short
time scales and 10 MHz over 5 minutes. Since this was still insufficient, a completely
new laser architecture was required to improve the stability.

We developed a monolithic red laser to provide better performance. The ECDL,
optics, and a triangular Fabry-Perot filter cavity were mounted on a single aluminum
baseplate housed in a temperature-controlled, vacuum-sealed box. Consequently, fre-
quency instabilities due to temperature and pressure fluctuations were minimized.
Locking was achieved via resonant optical feedback as well as 1f/3f electronic feed-
back, and was robust enough to last for many hours. The output of the monolaser
was a Gaussian beam with a frequency stability of at least 1 MHz over 5 minutes and
an estimated linewidth less than 10 kHz.

Using the monolaser, we were able to perform three types of experiments in our
strontium trap. The first was a depletion experiment, in which the red laser was
used to depopulate the 422nm S — P transition. Since our camera and photon

counter detect the emission of 422nm photons, depopulation of the transition causes
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a measurable dip in the fluorescence signal. By setting the red laser on resonance and

monitoring the ions, we could observe depletion effects.

Next, we succeeded in observing quantum jumps. Theory predicts that when
the red and blue powers are in an intermediate regime, they will compete to drive
either the S — P or S — Dy, transition. Whenever the ion transitions to the Dj
state, the fluorescence signal will disappear. By tuning the red and blue laser powers
to theoretically predicted values, we witnessed the spontaneous loss of fluorescence
that is the signature of quantum jumps. We showed that when there were three
ions in the trap, the time-dependent fluorescence signal exhibited four discrete levels,
corresponding to 0, 1, 2, and 3 dark ions. By some simple statistical analysis, we
showed that the number of counts at each level was consistent with a single probability

of transitioning, p = .356.

Additionally, we were able to vastly improve our measurement of the ion temper-
ature. Without the red laser, the temperature was determined by sweeping the blue
laser to observe a half-Voigt profile. Since sweeping the blue frequency directly effects

the ion cooling, the result of 660 mK provided only an upper bound on temperature.

Since the 674nm line is independent of the cooling transition, the red laser can be
swept to determine the Doppler linewidth, and hence temperature, of the ion. When
the red laser power was high, we observed a saturation effect, where the red laser could
not induce any further drop in fluorescence. By lowering the red laser power, we were
able to see the full line. Fitting this line to a Voigt profile gave a Lorentzian linewidth
of 23 MHz and a Gaussian linewidth of 6 MHz. The Lorentzian component was a
direct result of blue-laser broadening, while the Gaussian component corresponded

to a temperature of 35 mK.

Finally, we were able to observe sidebands of the red transition, which arise due
to the secular motion in ion traps. By applying a chain of pulse sequences, we could
resolve features previously shrouded by the blue laser. We found that the sidebands
were equally separated from the carrier by 650 kHz, and that the separation could be
changed by altering the trapping potential. By taking the ratios of peak heights, we

were able to determine the average number of motional quanta (m) = 143792, From
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this value, we used the Planck distribution to extract an ion temperature of 6.87575
mK. Since this is still two orders of magnitude above the Doppler limit, we concluded
that further ion cooling should be possible.

The work in this thesis has paved the way for the next class of interesting strontium
ion trap experiments. The logical next step is to further cool our trapped ions. By
sending a blue laser down the third degree of freedom and devising methods to improve
micromotion compensation, we can hope to reduce the number of motional quanta
and approach the Doppler limit.

Beyond this, we would like to sideband cool our ion to reach the motional ground
state. To accomplish this task, most experimental groups use a temperature-controlled,
vacuum-sealed high-finesse Fabry-Perot cavity fashioned from an ultra-low coefficient
of thermal expansion material. Peak locking to such a narrow cavity resonance typ-
ically gives stabilities on the order of 10 Hz over 5 minutes. Our quoted monolaser
stability compares unfavorably to this value. Therefore, while we may be able to side-
band cool with the monolaser, the best data will likely be obtained after building a
high-finesse cavity setup. Additionally, sideband cooling would require the construc-
tion of a 1033nm laser to ensure that the cooling rate is faster than the environmental
heating rate.

Once the ions are in their motional ground state, they can be entangled and used
to perform quantum computations. While large-scale quantum computation is likely
years away, the foundations of the field are already in place. Many consider ion traps
to be the leading candidate for experimental realization of quantum computing, and
several computer architectures involving ion traps have been proposed. The work
presented in this thesis represents a necessary foundation for realization of these

long-term goals.
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Appendix A

MATLAB Code for Quantum

Jump Simulations

1o oo o ToTo o To o o ToTo o Jo To o o ToTo o ToTo o Jo T o o To o o To o o Jo T o o To o o
% fluorescence.m

% Phil Richerme (richerme@mit.edu)

% 12.7.05

% Evolves the 3 level Sr system in time
Yoo 1o 6 To o ToToo 1o o Jo oo o o To oo o Jo To o o o JoToTo o o ToTo o o o To o o o To o
clear;

format long;

% Set parameters:

Wps=1e7; %\Omega for s-p transition (blue)
Wds=4e3; %\Omega for s-d transition (red)
gps=2e7; Y%gamma for s-p transition
gds=sqrt(gps/10°7); %gamma for s-d transition
t=b5e-9; ‘timestep

T=1e-3; %Time window

totalT=10000e-3; %Total Experimental Time
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% Set up matrices and vectors:

s=[1;0;0];

p=[0;1;0];

d=[0;0;1];

H=hbar/2+*[0 Wps Wds; Wps 0 0; Wds 0 0];
Hc=H-ixhbar/2*gps*p*p’-i*hbar/2*gds*dx*d’;

U=expm(-ixt*Hc/hbar) ;

% Set Constants and Initialize variables:
hbar=6.626e-34;

psi=s;

% Run the algorithm
for n=1:totalT/T
photons=0; 7% Reset Counter
for j=1:T/t
psi=Ux*psi;
psi=psi/norm(psi);
r=rand([1 1]);
pl=gps*abs(psi(2,1)) "2x*t;
p2=gds*abs (psi(3,1)) "2x*t;

if pi>r Ydecay from p to s
psi=s;
photons=photons+1;

end

if pl+p2>r && r>pl Ydecay from d to s
psi=s;

end
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end

photonsmx (1,n)=photons;

% Monitor Progress (comment out to increase speed)
if length(photonsmx)/10==floor(length(photonsmx)/10)
y=[0:1:1length(photonsmx)-1];
plot(y,photonsmx)
pause(.001) ;

end

end

x=[0:1:1length(photonsmx)-1];

plot (x,photonsmx)

xlabel(‘Time Bins’, ‘FontSize’,14);
ylabel(‘Counts’, ‘FontSize’,14);

title(‘Fluorescence vs. Time’, ‘FontSize’,16);

#Re-plot with 10ms and 100ms time bins
if 10e-3>T && 10e-3<totalT
j=totalT/10e-3;
k=10e-3/T;
for n=1:j
Aa=k*n-k+1;
Ab=k*n;
A(1,n)=sum(photonsmx(1,Aa:Ab));
end
Ax=[0:1:j-1];

figure;
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end

plot(Ax,A)
xlabel(‘Time Bins (10ms each)’, ‘FontSize’,14);
ylabel (‘Counts’, ‘FontSize’,14);

title(‘Fluorescence vs. Time’, ‘FontSize’,16);

if 100e-3>T && 100e-3<totalT

end

j=totalT/100e-3;
k=100e-3/T;
for n=1:j
Ba=k*n-k+1;
Bb=k*n;
B(1,n)=sum(photonsmx(1,Ba:Bb));
end
Bx=[0:1:j-1];
figure;
plot (Bx,B)
xlabel (‘Time Bins (100ms each)’, ‘FontSize’,14);
ylabel (‘Counts’, ‘FontSize’,14);

title(‘Fluorescence vs. Time’, ‘FontSize’,16);
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