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Abstract

We study the use of global drives with multiple frequency components to improve the efficiency of
trapped ion quantum simulations and computations. We show that such ‘multi-mode’ global
drives, when combined with a linear number of single-qubit rotations, generate universal
Ising-type interactions with shorter overall runtimes than corresponding two-qubit gate
implementations. Further, we show how this framework may be extended to efficiently generate
n—body interactions between any subset # of the ion qubits. Finally, we apply these techniques to
encode the Quantum Fourier Transform using quadratically-fewer entangling operations, with
quadratically smaller runtime, compared with traditional approaches.

1. Introduction

Quantum computation and quantum simulation rely upon controlled physical processes to transform an
initial quantum state into an output state. Such transformations are typically decomposed as discrete
quantum gates [1], blocks of analog evolution under the Schrédinger equation [2], or combinations of the
two [3, 4]. Particularly in this era of noisy and intermediate-scale quantum devices [5], finding
decompositions that minimize the runtime of quantum algorithms, as well as the required number of
entangling operations, is key to improving overall process fidelities and reducing the overhead required for
quantum error correction [6].

The optimal decomposition of quantum algorithms depends sensitively on the capabilities and native
instruction set of a chosen hardware platform. Although it is well-known that any algorithm may be
decomposed into single-qubit and controlled-NOT gates [1, 7], alternative gate sets [1, 8—10] may be more
natural to implement on specific quantum hardware. For instance, trapped-ion platforms often employ
combinations of single-qubit rotations [11, 12] and locally-addressed Ising-type entangling operations [13]
to achieve universal quantum computation [14—16]. Moreover, global entangling operations may be realized
with relative ease in trapped-ion systems [2, 3], which may lead to improved efficiencies when implementing
specific quantum algorithms or simulations [17-23].

Global entangling operations have been used in most of the trapped ion Hamiltonian simulation
experiments to date [2]. Typically, global laser beams are used to generate Ising-type spin—spin interactions
that decay algebraically with distance [24]. However, much broader classes of interactions are achievable by
applying multiple frequency components to the global beams, thereby engineering the couplings between the
driving field and the ions’ vibrational modes [25, 26]. Although quantum simulations with such
‘multi-mode’ global drives can directly address specific problems in quantum materials and quantum
chemical systems [25], they cannot address arbitrary problems since they do not form a universal gate set on
their own.

In this work we study the universal gate set comprised of multi-mode global drives and single-qubit
rotations. We show how arbitrary Ising-type interactions may be generated by alternating layers of global
drives with single-qubit rotations, with the number of layers scaling linearly with the number of qubits. In all
studied cases, we find the runtime of this approach to be shorter than the corresponding implementation
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using direct two-qubit gates. Next we apply this technique to the generation of n—body interactions, again
finding a relative speedup compared with the two-qubit gate approach. Finally we demonstrate how the
Quantum Fourier Transform (QST) may be decomposed using multi-mode global drives and single-qubit
rotations, providing a quadratic improvement in both the overall runtime and number of required
entangling operations.

The article is structured as follows. Section 2 reviews the background of generating spin-spin interactions
using global laser beams and the types interactions which may be generated by controlling the couplings to
the ion vibrational modes. We then introduce a template circuit based on multi-mode global drives that
provides universal computation and simulation. In section 3, we apply this template circuit to generate
arbitrary Ising-type models and characterize its performance in implementing power-law interactions,
spin-glass systems, and random matrices. Section 4 focuses on the implementation and performance of
n-qubit gates, with n > 2, while section 5 discusses the composition of the QST using our gateset of
multi-mode drives and single-qubit rotations. We conclude in section 6 with a discussion of our results, and
possible challenges and opportunities for experimental implementation.

2. Universal quantum operations using multi-mode global drives

2.1. Generating effective spin—spin interactions

We consider a collection of N trapped-ion qubits, with electronic basis states | |), and | 1), confined in a
global potential with a set of N transverse mode frequencies wy (k= 1,...,N). Effective spin—spin
interactions between ions may then be generated by driving with radiation at a frequency close to the mode
frequencies wy [2, 27, 28]. When ions are addressed using a bichromatic electric field of the form

E = Eyjcos[kx — (wo = 1)t + ¢], the resulting laser-ion Hamiltonian may be written [27]:

N
Hyppys = Z_diEoU; cos (kxi — wot £ put + ¢) (1)

1

where d; is the magnitude of the electric dipole operator for the ith ion, o is the Pauli spin flip operator
between the | |), and | 1), states on ion 7, and p is the detuning of the exciting radiation from the qubit
splitting wy.

In the regime where the motional modes are only virtually excited, or at times when the ions’ phase space
trajectories have all closed, the time evolution under Hp,ys may be approximated by evolution under an
effective Ising-type Hamiltonian [24]:

Hlsing = Z]ljo—)lc UZ: (2)

i<j

where the strength of coupling between ions 7 and j is given by

BixBjx
2 —w? 3)

N

i = Qi QR .
] ij (A1 ; —
In equation (3), §2; is the on-resonance Rabi frequency at ion i, R is the recoil frequency R = h(Ak)?/(2m),
and Ak is the momentum transfer from the electric field to each ion. The summation is performed over all
mode indices k and depends upon the normal mode matrix elements Bj of the mode vectors Ek, as well as
the corresponding mode frequencies wy. When only two ions i and j have non-zero Rabi frequency, this
formulation is equivalent to the arbitrary-angle Molmer-Sgrensen gate MS( ;) [13], where the gate angle
Xij = J;iT, and T is the gate time. Conversely, when a global beam illuminates all ions simultaneously, this
generates simultaneous fully-connected interactions between all pairs of ion qubits.

Equation (3) may be generalized to account for driving fields with M bichromatic tones, each with
independent detunings y,, and global Rabi frequencies (2. Already, drives with multiple frequency
components have been utilized to generate robust entangling gates [29, 30] and broaden the classes of
quantum simulation experiments accessible to trapped-ion systems [25, 26, 31]. We refer to this condition as
‘multi-mode’ global driving, generating the following coupling strength between ions i and j:

m

N M QZ R
Jij = Z Z mBikBjk- (4)
k m

2
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Figure 1. Transverse modes of N = 5 harmonically-confined ions in a one-dimensional chain. Green lines show the mode
frequencies. These modes may be driven using multiple bichromatic tones with independent amplitudes (blue lines). Insets show

each normal mode matrix J¥), scaled by its contribution ¢, which add up to produce the final J ii couplings (rightmost matrix).

Following [25], equation (4) may be rewritten as
N
k
Jij= ZCIJ,%) (5)
k

where the set of matrices J®) = by ® by depends only on the mode vectors by and are weighted by a
coefficient ¢y = °, Q2 R/(pi2, — w?). Since the J¥) matrices are dictated exclusively by the trapping
potentials, the only tunable knobs for changing the interactions between ions are the mode frequencies
and amplitudes €2,,, which comprise the weights ;. Through numerical optimization, one may determine a
set of (2, amplitudes which yield any desired ¢, weights, while satisfying all mode phase-space closure
constraints and minimizing the evolution time T (subject to the available laser power). We take this
procedure as a prerequisite for the methods introduced below.

This formalism is shown graphically in figure 1, where multiple independent tones are used to drive a
crystal of N=5ions. The N=5] ) matrices, corresponding to each of the normal modes, inherit the
structure of the normal mode vectors and are displayed above the spectrum. The matrices are each weighted
by their coefficient ¢; and summed together to generate the final coupling J;; between all pairs of spins. As
explored in [25] and [31], this ability to arbitrarily tune the mode weights ¢ can lead to novel classes of
trapped-ion quantum simulation experiments using exclusively global beams.

2.2. Template protocol for universal quantum operations

Although multi-mode global drives can expand the types of interactions available to trapped-ion qubits, they
are not universal for quantum computation or simulation. For example, Ising-type models (equation (2))
with arbitrary Ji; couplings cannot be constructed using multi-mode global drives alone. This is because
fully-connected Ising models contain O(N?) pairwise interactions between N qubits, but multi-mode global
drives can at most specify O(N) couplings via the normal-mode weights c;. More degrees of freedom are
therefore required to achieve arbitrary interactions.

In this work, we introduce the template circuit in figure 2 as a means of achieving universal quantum
operations. This circuit, which is comprised of multi-mode global drives and single-qubit rotations,
combines the techniques of hybrid digital-analog quantum simulations [4, 32] with the multi-mode global
drives first explored in [25]. In this protocol, N + 1 blocks of analog time evolution are interspersed with
pairs of single-qubit R, () rotations, labeled Z in figure 2. Within each analog block, unitary evolution

U, = e~ Hun proceeds under the Hamiltonian H, = 5 i<j ]{]‘-Jfaj’-c for time t,, where the couplings

Ji=2>%q ]Ejk) in each block are adjusted by controlling the mode weights c{. Further, the pair of R (7)
rotations surrounding each block flip the spin of a single ion, inverting its sign of coupling in the overall J;
matrix. Such spin flips allow for the generation of J;; matrices outside the accessible domain of global beams,
and they may be viewed analogously to spin-echo pulses for canceling unwanted couplings between qubits.
Compared to traditional digital-analog approaches, multi-mode global drives provide a quadratic
reduction in the number of analog blocks and single qubit flips required for arbitrary interactions. In [4], for
instance, each analog evolution block evolves a fixed Hamiltonian H=") ", < ]ijafaf for a variable time .
Since the Hamiltonian is constant, arbitrary control over all N(N — 1)/2 couplings requires N(N — 1) /2

3
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Figure 2. Template circuit showing the general framework used in this paper. Global drives enact the Unitary U, = e~ for
each analog block #, while pairs of Z gates sequentially flip each of the N qubits.

analog evolutions sandwiched by two-qubit pairs of R,(7) rotations. In contrast, multi-mode driving
removes the restriction of fixed Ising couplings during each analog evolution block. As a result, this allows
for the generation of O(N) linearly-independent Hamiltonians H,; thus, only O(N) blocks sandwiched by
single-qubit flips are required to achieve arbitrary interactions.

In the sections below, we will apply this multi-mode global drive framework to build complex
Hamiltonians and quantum circuits of interest to quantum simulation and computation. The available
control parameters will be the N — 1 linearly-independent mode weights ¢ within each analog block', as
well as the N + 1 block evolution times #, in the template circuit. All together, these (N —1)(N+1)
parameters form an overcomplete set for generating arbitrary Ising interactions. This enables the freedom to
select an optimal set of parameters ¢ and ¢, which minimize the overall circuit runtime, as will be explored
in section 3.2.

3. Arbitrary ising interactions

In this section, we will show how to generate Ising interactions (equation (2)) with arbitrary J;; couplings
between spins, using the template circuit introduced in section 2. Full control over these couplings opens the
possibility for trapped-ion quantum simulators to study, for instance, interacting spin models with exact
(rather than approximate) power-law interactions [2], Ising spin-glass systems [33], optimization problems
[34, 35], and effective higher-dimensional spin lattices [36, 37]. In addition, arbitrary control over the
Ising-type spin—spin couplings may be extended to quantum simulations of arbitrary XY or Heisenberg-type
models, either through analog [38, 39] or digital approaches [3].

3.1. Comparison to prior work

Several existing approaches have been proposed and demonstrated for constructing arbitrary Ising-type
couplings between trapped ions. In the ‘direct’ approach, which will serve as a basis for comparison in the
rest of this paper, two-qubit Mglmer—Sorensen gates are used to sequentially apply the couplings

{2,113, ---,In—1,n}. This technique requires experimental hardware that can perform locally-addressed
entangling operations, with N(N — 1) /2 gates required to build the full J;; matrix. In principle, the
implementation runtime of this technique is the two-qubit gate time multiplied by the number of non-zero
Jij matrix elements. It has also been proposed to modify the direct approach by adding multiple frequency
components to each laser beam, creating arbitrary interactions in parallel [40], or by implementing phase
modulation to create a desired Ising interaction pattern [41, 42]. However, these approaches still require
locally-addressed beams to generate entanglement.

To avoid the experimental challenges of locally-addressed entangling gates, several proposals have
discussed ways to achieve complex couplings by combining global drives with locally-addressed single-qubit
rotations. In [43], for instance, local R,(7) pulses are used to transform an initial long-range Ising
Hamiltonian with translation invariance into any other Hamiltonian in that class. Likewise, adding multiple
frequency tones to global entangling beams has been shown to create a wide variety of interesting coupling
patterns relevant to quantum many-body spin systems [31, 44]. Fully-arbitrary Ising couplings are made
possible following the digital-analog methods in [4], which intersperse N(N — 1) /2 blocks of analog
evolution under a fully-connected Ising Hamiltonian with double pairs of local 7 spin flips. For this case, the
overall runtime and number of entangling blocks both scale as O(N?). It has also been shown that the
implementation runtime can be reduced to linear O(N) scaling by allowing arbitrary numbers of qubits to

! Since the J) matrices satisfy the property that Dk J®) =1 [25], the vibrational modes provide only N — 1 independent degrees of
freedom.
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be flipped at each digital layer [45]. To determine the appropriate flips and sequence timing, a linear program
was used to generate the target Hamiltonian in the shortest runtime, given an input Hamiltonian and
variable analog evolution times between digital steps.

3.2. Synthesizing arbitrary ising interaction with multi-mode global drives

Here, we outline our approach for generating arbitrary Ising interactions using multi-mode global drives and
a linear number of single-qubit spin flips. Compared to prior efforts, we report three primary advantages of
our method: (1) the template circuit in figure 2 requires only N single-qubit flips, rather than N? [4, 32] or
more [45], which simplifies the overall circuit and reduces the overall single-qubit gate infidelity; (2) finding
the optimal solution in our approach only requires polynomial resources, rather than the exponential
resources required in reference [45]. As a result, we can easily find solutions for 100+ ions, well beyond prior
demonstrations; (3) We observe faster quantum circuit runtimes for our method compared to direct
two-qubit gate approaches as well as the approaches in [4, 32, 45], while requiring fewer single-qubit gates
and classical optimization time.

To begin, we assume an ion trap quantum simulator operating in the Lamb-Dicke regime, capable of
implementing the fully-connected Ising couplings as in equation (4) as well as local R, () rotations. At the
n™ timestep in the template circuit (figure 2), pairs of R,(7) rotations flip the spin of the n™ qubit during
that block’s analog evolution. This transformation is equivalent to evolution under the Hamiltonian
Hy=> . j ]}}, o} o7, where ]g-/ is the original Ji; matrix with inverted coupling sign in the n™ row and column.
The full unitary evolution enacted by the template circuit in figure 2 is then:

U= Hexp [—iH,t,] = exp [—iZH,;tn] = exp —iz (Z]?j/tn> oioj | - (6)

i<j n

Equation (6) demonstrates that the template circuit can be made to replicate the dyanmics of any desired
Ising coupling ]ges, so long as (Z ; ]g/ tn) can be made equivalent to ]ges.

Our goal will be to find the parameters which exactly replicate the target Ising couplings, while
minimizing the overall runtime ) t,. It is critical that constraints be placed on the strength of the mode
weights c}'; if not, the circuit runtimes can be made arbitrarily small by making the driving Rabi frequencies
(and thereby the c}}) arbitrarily large. We therefore assume a finite laser power to be split between all k
normal modes, such that ) _, [c}| = 1 at each timestep n. Using equation (5), the unitary evolution within
each analog block may be written:

U, = exp [—iH,t,] = exp —iz Z tncZ]fjk)Ufa]’-‘ = exp —iZZEZ]i(jk)Uij‘ (7)
k k

i<j i<j

where in the last equality we have absorbed the evolution time into the weight constant, such that ¢} = f,c].
Then, under the constraint ) _, |c}| = 1, minimizing the overall runtime ) _, t, is equivalent to minimizing

22 2k leg, since

S EI=DY Dl =Dt 8)
n k n k n

To find the optimal mode weights ¢}, we first ‘vectorize’ each ]i(jk)’" matrix by arranging its N(N — 1) /2
upper-triangular entries into a column vector, ]_;’{’ [4]. Next, we build a matrix whose columns are the]_';'{’
vectors. At each timestep, there are N — 1 linearly—independentﬁ< vectors, and there are N + 1 timesteps, for
a total of (N — 1)(N + 1) columns. We seek that this matrix, times the column vector of all ¢} values,
generates the vectorized version of the desired couplings, fdes.

Since the number of ¢} elements form an overcomplete set compared to the N(N — 1) /2 Ising couplings,
we use a linear program [45, 46] to find the specific {¢}} which minimize the circuit runtime, subject to the
constraint of generating the desired couplings. Since the ¢} may themselves be positive or negative, care must
be taken to ensure the minimization does not diverge. We address this issue by doubling the width of the
matrix described above, explicitly including positive and negative versions of each column vectorf,’j, as

5
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shown in the matrix structure below:

~r1,+
: | : %
. ‘ . .
DB N DD N S
Nh 2 IN— : —Ji 1 o TIN-1 T T Jdes
.. | :
1 A=
%

This framework forces all ¢} > 0, allowing a standard linear program to minimize the sum over all
2(N—1)(N+ 1) parameters EZ’i while satisfying the matrix equation shown above.

We implement the linear program using the LinearProgramming [] function in Mathematica. Inputs to
this function are thef,z’ vectors, which are pre-determined based on the normal modes and single-qubit spin
flips, and the desired coupling vector j,. This function outputs a list of mode weights for each mode k at
timestep 1, where the position of each mode weight within the double-length column vector indicates
whether a specific ¢}/ should be set positive or negative. Then, following equation (8), the overall circuit
runtime is calculated by summing Y >", |¢}|.

Although the simplex method of linear programming might exhibit exponential worst-case complexity
[47], polynomial-time scaling with system size is more commonly observed in practice [48]. For our
application, the number of variables ¢} scales as O(N?), suggesting that the linear programming approach
requires an overall execution time polynomial in the number of qubits N. Indeed, the numerical results
presented in the rest of this work (with up to N = 100 qubits) all took < 1 min per point to obtain, using a
desktop computer with an Intel Core i7 Processor (3.6 GHz) and 64 GB of RAM.

3.3. Numerical results

We now compare two approaches for generating arbitrary Ising interactions. In the first approach, local
two-qubit entangling gates are applied sequentially to build the desired coupling matrix ]idjes. We assume that
these gates may be driven via the center-of-mass vibrational mode with perfect fidelity in a time 7, and that
couplings to all spectator modes are negligible. For a system with k non-zero two-qubit couplings, the total
implementation time is then k7 [49-51]. In the second approach, global multi-mode drives are combined
with single-qubit rotations (figure 2) to engineer the desired couplings. The overall implementation time is
the sum of all analog-block runtimes, >, t,, which is equivalent to the sum of all effective mode weights

> nx|€k] (as derived in section 3.2). We assume that single-qubit rotations can be performed much more
quiékly than entangling operations and contribute negligibly to the overall runtime. For all numerical results
below, we define the scaled runtime to be the total implementation time required to evolve the unitary

U = e " for (unitless) time t = 1, given a desired Hamiltonian.

We start by investigating Ising couplings with long-range power-law interactions. To date, many
quantum simulation experiments have generated approximate power-law couplings of the form
Jij =Jo/|i —j|*, with 0.5 < o < 2, using a single pair of bichromatic tones [2, 38, 52]. Here, we explore
models with exact power-law decay, over the full range 0 < o < 0o (e.g. from all-to-all interactions to
nearest-neighbor-only interactions).

In figure 3(a), we compare the scaled runtimes for generating all-to-all couplings (o = 0) using the direct
two-qubit approach and the multi-mode drive approach. In the direct approach, there are N(N — 1) /2 Ising
couplings which must be individually implemented with sequential gates, leading to a quadratically-scaling
runtime with system size. In contrast, multi-mode driving enables generation of all-to-all couplings by
exciting the center-of-mass mode for a single timestep. The scaled runtime is therefore constant with system
size. This multi-mode drive advantage becomes pronounced at even moderate system sizes, with a predicted
800x speedup for N = 40.

For nearest-neighbor interactions (o = c0), multi-mode global drives show an approximately linear
speedup compared to two-qubit gates. As shown in figure 3(b), the direct approach requires (N — 1) Ising
couplings to be implemented for the nearest-neighbor case, resulting in a linear scaling of runtime with
system size. Simulations of the multi-mode drive approach exhibit approximately constant scaling.

Figure 3(c) shows the runtimes for all power-law decays between all-to-all and nearest neighbor, for

N ={20,30,40} ions. For all ion numbers, and for all power law decay exponents, the multi-mode drives
may be implemented with significantly shorter runtimes when compared to the sequential two-qubit gate
approach.
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Figure 3. (a) The runtime for implementing all-to-all interactions using sequential two-qubit gates (blue) scales quadratically
with ion number, compared to the constant-time scaling of multi-mode drives (red). (b) Nearest-neighbor-only interactions may
also be implemented in shorter runtime using multi-mode drives. (c) Runtime comparison for Ising interactions with exact
power-law decay, J;j = Jo/|i — j|%, for N = {20, 30,40} ions. In all cases, multi-mode drives (red) require significantly shorter

implementation times than direct two-qubit gates (blue).
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Figure 4. Scaled runtimes for sequential two-qubit gates (blue) and multi-mode drives (red) when averaging over random
instances of (a) an Edwards-Anderson Ising spin glass, (b) a Sherrington—Kirkpatrick spin glass, and (c) a fully-randomized J;;

interaction matrix.

Similar runtime comparisons may be performed for Ising models with randomized J;; couplings. Such
models may be used to characterize, for instance, spin glass magnetic systems in quantum condensed-matter
physics [33]. In figure 4(a), we analyze the runtimes for implementing an Edwards—Anderson (EA) Ising spin
glass [53], defined by nearest-neighbor-only interactions with Gaussian-distributed J;; of mean 0 and
variance 1. Since there are O(N) random couplings in the EA model, the runtimes for both the direct
two-qubit implementation and multi-mode drives exhibit linear scaling with system size, when averaged over
50 random instances per point. In all cases, the multi-mode drives outperform the direct implementation,
due to the flexibility of choosing the mode weights ¢} from an overcomplete set.

We also analyze the performance of related models: a Sherrington—Kirkpatrick spin glass [54], which
expands the EA model to include connections between all lattice sites, and a fully-random matrix model with
uniformly distributed J;; € [—1,1]. As in figure 4(a), we average over 50 random iterations of each model.
Figures 4(b) and (c) demonstrate a quadratic scaling of runtime with ion number in both cases, resulting
from the O(N?) fully-connected couplings. Once more, we observe that the multi-mode drive protocol
enables significantly shorter runtimes compared with the direct two-qubit gate approach. In addition,

7
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Figure 5. (a) The runtimes for simulating random J;; matrices by driving all-to-all interactions using pairs of single-qubit flips, as

in reference [4], are shown as purple squares. Adding multi-mode driving (black squares) improves the runtimes. Multi-mode

driving using only sequential single-qubit flips (red circles), as in figure 4(c), is shown for reference. (b) When arbitrary numbers

of spin flips are allowed to bracket each Unitary block, as in [45], the predicted runtimes for simulating random interactions show

further improvement. Green squares show driving with all-to-all interactions, and black squares show small improvement using
multi-mode drives. Red circles again show multi-mode driving using only sequential single-qubit flips.

figure 4(c) confirms that fully arbitrary Ising models are accessible using the simple template circuit
introduced in section 2.2.

3.4. Expanded multi-mode drive protocol

Our multi-mode global drive protocol, as shown in figure 2, alternates O(N) analog evolution blocks with
pairs of single-qubit spin flips. In contrast, protocols without multi-mode drives require O(N?) blocks,
surrounded by spin flips on 2 [4] to N [45] qubits in parallel. Here, we explore the reductions in runtime
that are accessible by expanding our template circuit to include parallel Z flips on multiple qubits between
analog blocks.

In figure 5(a), we study the implementation runtimes for a fully-connected random Ising model,
averaged over 50 random iterations. This model was discussed in figure 4(c) and is shown again here (in red
circles) for reference. Already, the multi-mode drive approach (with single Z flips) outperforms single-mode
drives with 2 parallel Z flips [4], shown as purple squares. Expanding the multi-mode drives to include 2
parallel Z flips per block further improves the runtimes, shown as the black squares in figure 5.

In figure 5(b), we study the same model while allowing for arbitrary numbers of parallel spin flips per
block, from 1 to N. In this case, single-mode drives with arbitrary numbers of flips (green squares) [45] show
improvement over the single-flip multi-mode drives (red circles). Expanding multi-mode drives to include
arbitrary flips (black squares) shows only minor further improvement. Unfortunately, finding the optimal set
of arbitrary spin flips scales exponentially in the system size, since there are are 2V possible transformations
of each Ii(jk) matrix per timestep. This approach therefore becomes infeasible for even modestly-sized lattices
of a few dozen ions.

4. n-Body interactions

Multi-qubit gates, and n-body interactions, often arise naturally in the expression of quantum simulation
and computation problems. For instance, many interesting systems in condensed matter physics, nuclear
physics, and quantum chemistry contain #-body interactions as crucial components of the system the
Hamiltonian [55-59]. In addition, it has been found that n-body interactions may be used to improve the
efficiency of common quantum circuits compared to single- and two-qubit gates alone [18, 23]. However,
such interactions, which take the form ¢, ® 02, ® ... ® 0", a € {x,y,z}, require dedicated hardware
implementations and in general cannot be synthesized using Trotterized sequences of two-body interactions
[3]. In this section, we will show how n-body interactions between trapped ions may be generated using the
framework of multi-mode global driving, and we will demonstrate that the scaled runtime of this approach
compares favorably to more traditional techniques.

4.1. Comparison to prior work

To date, two primary approaches have been used to realize n-body interactions in trapped ion systems. In the
first approach, n-body interactions are generated via spin-dependent squeezing, which arises from driving
ions near their second set of motional sidebands [60, 61]. However, experimental implementations of this
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Figure 6. Template circuit for simulating the time evolution of a Hamiltonian with four-body interaction term ofo}o}o}.
Rotation operations R and global multi-qubit unitaries Unq are defined in the text.

approach [62, 63] have required trapped-ion hardware with individually-addressed entanglement beams,
which are outside the realm of global multi-mode drives.

The second approach, described in [3] and [64], combines the all-to-all connectivity of global Mg
Imer—Se rensen operations with single-qubit rotations to create n-body gates. Following [3, 64], we show an
example circuit for generating unitary time evolution under the 4-body Hamiltonian H = JoloZolot in
figure 6. Central to such circuits are the multi-qubit unitaries Upq(27/2), which are typically chosen to be
fully-entangling Mo lmer-Sg rensen interactions with uniform couplings between all spins. These global
interactions bracket a local R, rotation on the first qubit, with a rotation angle proportional to 2Jt. (The
positive rotation angle is used for N = 4k + 2 and N = 4k + 3 qubits, the negative angle is for N = 4k and
N = 4k + 1 qubits, with k € N). Finally, the first qubit is subjected to pre- and post-rotations R(£7/2), with
rotation operator R, used for odd numbers of qubits and R; used for even numbers.

4.2. Synthesizing multi-qubit gates with multi-mode driving

To generate programmable n-body interactions using global multi-mode drives, we will expand upon the
template circuit introduced in figure 6. We seek to overcome two limitations of existing approaches: (1) the
multi-qubit unitaries Uy, in figure 6 represent fully-entangling Mglmer—Serensen interactions with
uniform couplings. In theory, these can only approximately be achieved using global beams with
single-mode drives due to coupling to spectator modes. (2) For an N—qubit system, the above approach
cannot generate n-body interactions between a subset of qubits n < N using global entangling beams.

Our approach for implementing n-body gates uses the arbitrary Ising interactions shown in section
3.2 to enact the unitary operations Upq in figure 6. Within this framework, limitation (1) above may be
circumvented by using multi-mode global drives to generate a pure all-to-all Ising interaction. This
corresponds to choosing the multi-mode drive frequencies and amplitudes such that ¢, = 1 for the
center-of-mass mode in equation (5), and ¢, = 0 otherwise. Similarly, limitation (2) may be addressed by
tailoring the Ising couplings so that only the desired subset of qubits # < N participate in the n-body
interaction. This corresponds to setting J;; constant for couplings between the n participating qubits, and
setting J;; = 0 otherwise. Since arbitrary Ising interactions may be realized following the techniques in
section 3.2, any n-body gate implementation is always accessible using this framework.

In figure 7, we compare the runtimes for implementing n—body interactions with up to N = 12 ions. In
the direct two-qubit gate approach, the unitary operators Uy may be decomposed as sets of n — 1
controlled-NOT gates between the top qubit and all other participating qubits [1]. As a result, the direct
two-qubit gate approach exhibits a linear scaling of runtime with n—body system size. In contrast, when
multi-mode global drives are used to generate these same Upiq operators, we observe much more favorable
runtimes which are approximately constant for increasing system size. This scaling is exactly constant for the
n =N case, since the Uyiq operators may be implemented by driving a center-of-mass interaction for a single
timestep, independent of system size.

Due to the structure of the example circuit in figure 6, only the Ising interactions involving the top qubit
matter; all others are canceled by the Uy and subsequent UMQ operations. For this reason, the left inset of
figure 7 has zeroed all Ising interactions unless they involve the top qubit and another participating qubit.
However, this Ising interaction does not lead to the fastest runtime in a multi-mode drive implementation.
By keeping the J}; and J;; interactions as needed for the n-body gate, we solve for the remaining set of Ising
couplings that provides the minimum possible runtime. As shown in figure 7, this results in further
improvement in the scaled runtime (filled red circles) compared with naive multi-mode drives (open
squares) and direct two-qubit gates (blue circles).
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Figure 7. Runtimes for implementing n-body interactions in a chain of 12 ions. Each point represents the average runtime when n
out of 12 ions participate. Sequential two-qubit gates (blue circles) require linearly increasing runtimes. Shorter runtimes are
achievable using multi-mode driving (red), either by engineering the same interaction matrix as in the two-qubit approach (open
squares), or by implementing the J;; matrix that minimizes the runtime (filled circles). Example matrices for each case are shown
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Figure 8. Traditional quantum circuit for implementing the Quantum Fourier Transform on a 4-qubit system. The O(N?) Ry
gates denote controlled phase rotations by angle 27 /2%, and H is the Hadamard gate. Swap gates at the end of the circuit are
omitted for clarity.

5.QFT

The QFT plays a central role in key quantum algorithms, such as Quantum Phase Estimation and Shor’s
algorithm [1]. A traditional QFT circuit, shown in figure 8, is constructed from single-qubit Hadamard
operations and O(N?) controlled phase rotations applied to an N—qubit system. In this section, we will show
how multi-mode global driving allows for a quadratic reduction in the circuit depth, reducing the number of
entangling operations from O(N?) to O(N). In addition, we will show that the scaled runtimes for
implementing the full and approximate QFTs are also reduced when using multi-mode drives, compared to
standard two-qubit gate approaches.

5.1. Comparison to prior work

Several prior works have proposed techniques for synthesizing the QFT using global entangling operations.
In [65], for instance, the authors build upon Digital-Analog Quantum Computation [4] to decompose the
controlled-phase rotations into analog evolution blocks interspersed with pairs of local spin flips. Just as in
[4], this approach requires O(N?) analog blocks for each set of controlled rotations appearing in the QFT
circuit. Similarly, reference [45] expresses the QFT using multi-qubit gates, along with a linear program to
determine the time-optimal sequence of single-qubit flips between analog evolution blocks.

Further work [18] shows how the QFT may be compiled using global operations and single-qubit
rotations, optimized for the interactions native to trapped-ion hardware platforms [66]. Under this
approach, the required interaction strength between qubits should fall exponentially with distance, as
Jij ~ 27117/l However, since power-law interactions J;; ~ 1/|i — j|* are much more natural for trapped-ion
systems [2], references [18] and [67] focus on such approximate implementations of the QFT rather than on
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Figure 9. (a) Controlled R gates may be decomposed into single-qubit rotations around the X and Y axes, and a single XX
interaction that depends on the desired k. (b) Applying the decomposition in (a) to the traditional QFT circuit in figure 8
generates an equivalent QFT operation using only O(N) global unitaries Uqgr (see text for definition).

exact synthesis. For specific ranges of power-law decay exponent a, these studies find that QFT
implementation fidelities in excess of 90% may be recovered.

5.2. Implementing the QFT with multi-mode global drives
In our approach to implementing the QFT operation, we combine the framework introduced by [18]
with the arbitrary Ising interactions described in section 3.2. First, we decompose the QFT in terms of
single-qubit rotations and global entangling operations. Then, we use multi-mode global driving to directly
create the required J;; couplings for implementing the QFT. In particular, since multi-mode drives can
generate arbitrary patterns of couplings, they may be tailored to exactly produce the exponential decay
Jij ~ 27117 that was inaccessible to earlier approaches with global drives.

Our full decomposition of the QFT operator is shown in figure 9. We begin by isolating a single
controlled-phase rotation Ry (figure 9(a)). This gate is decomposed into single-qubit rotations and an XX
interaction, which corresponds to evolution under the Ising Hamiltonian

XX(Q) _ e—i@a’l‘a'z‘ — e—ihgo”fo”z‘t (9)

where we may define the rotation angle 6 = J;,t. Thus, each of the controlled phase rotations in the QFT
operator between ions i and j (figure 8) may be individually mapped to single-qubit rotations and Ising
interactions of the form Jj;.

In figure 9(b), we demonstrate the full decomposition of the QFT operation into single-qubit rotations
and O(N) global unitary operators Uqpr. Comparing the structure of the controlled rotations Ry in figures 8
and 9(a), we define the Uqpy operator as an Ising-type analog evolution:

Uger = exp | =iy _Jyofort (10)
i<j

where Jjit = 7 /4 - 2717/ when i or j is a control qubit, and J;; = 0 otherwise. For instance, the three Uqpr
operators shown in figure 9(b) should be evolved with Ising couplings

Uit), = P Uit), = P Uit); =
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which are all achievable following the arbitrary Ising protocols introduced in section 3.2.

We quantify the performance of this QFT decomposition in figure 10, by comparing the scaled runtimes
of this approach and the traditional QFT. For a standard QFT implementation (figure 8), each of the N
qubits serves as a control for a series of Ry gates, whose combined runtime scales as O(N?). Hence, the
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Figure 10. (a) Runtimes for implementing the Quantum Fourier Transform on N ions using sequential two-qubit gates (blue)
versus multi-mode driving (red). (b) Runtimes of the approximate QFT applied to a 12-ion system. Shorter runtimes are
achievable for both direct two-qubit gates and multi-mod drives when lower precision is required. (c) When implementing
multi-mode drives, many coefficients ¢} become small compared to typical experimental precision. (d) Truncating the ¢}
coefficients below a certain threshold leads to small infidelities Z when implementing the QFT.

overall runtime for a standard QFT circuit grows quadratically with system size, shown as the blue points in
figure 10(a). For multi-mode global drives (red points in figure 10(a)), we find polynomially faster runtimes
which scale as the square root of system size, O(N'/2). In this approach, the runtime cost of implementing
the arbitrary Ising matrices needed for the Uqpr operators (equation (10)) decreases with system size as
~1/ V/N,and N implementations of Uqgr are required for the full QFT circuit.

We also consider implementations of the approximate QFT [1], which reduces the number of entangling
gates by keeping only the controlled phase rotations larger than a threshold angle. For b—Dbit precision, this
needs only O(bN) controlled rotation gates rather than O(N?) for the standard QFT. To implement the
approximate QFT to b—bit precision using multi-mode global drives, the J;; couplings used for each iteration
of the Uqgr operator (equation (10)) should be kept only when |i — j| < b. Under these conditions, we
compare the runtime performance of using direct two-qubit gates (blue) and multi-mode drives (red) in
figure 10(b). We observe linear scaling in both cases, with a notably smaller slope for the multi-mode drive
approach.

Finally, we consider an alternative approximation for the QFT operation, where we truncate the ¢}
coefficients comprising the multi-mode drive if they fall below a threshold value. In figure 10(c), we show a
histogram of the ¢! coefficients required for implementing the first Uqpr operator during a full 12-ion QFT.
We observe that nearly half of these coefficients are at the level of 0.001 or below and contribute minimally to
the unitary dynamics. Indeed, as demonstrated in figure 10(d), QFT implementation fidelities in excess of
99.99% remain accessible even when half of the ¢! coefficients are eliminated. Such observations are key
when considering practical implementations of multi-mode drives using imperfect experimental hardware.

6. Conclusions

In this work, we have introduced a universal framework for synthesizing trapped-ion quantum logic
operations using global entangling beams and local qubit rotations. This framework leverages the ease with
which multiple independent frequency components may be added to global laser beams, allowing for
tailored couplings to the available vibrational modes of the trapped-ion lattice. Although such global drives
can only control up to (N — 1) of the N(N — 1) /2 possible qubit-qubit couplings, interspersing these drives
with local rotations enables fully universal control over the resulting Hamiltonian dynamics. As example
applications, we have demonstrated the synthesis of Ising-type Hamiltonians with arbitrary spin—spin
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couplings, multi-body interactions beyond standard two-qubit gates, and an implementation of the QST, all
using global beams and local rotations.

Moreover, this multi-mode global drive framework provides more degrees of freedom than the number
of qubit—qubit couplings. This allows for a set of drive parameters to be chosen that minimizes the overall
runtime of the decomposed quantum circuit. We showed how this problem may be recast in terms of a linear
program so that standard algorithms could quickly find an optimal solution. Our analysis of multi-mode
drives has demonstrated that significant speedups are possible using this approach compared to direct
implementations using two-qubit gates, and that quadratic speedups are achievable in many cases. In fact,
for all examined applications, we have not found an instance where the direct two-qubit gate approach could
be executed with shorter runtime than an optimized multi-mode global drive.

Experimental implementation of this multi-mode global drive protocol will require several specific
considerations. For instance, generating the mode-coupling weights ¢} may practically be accomplished by
passing a global beam through an acousto-optic modulator (AOM) driven with multiple independent rf
tones. As shown in [26, 31, 44], the number of required tones scales linearly with ion number N, while the
overall Rabi frequency split amongst the tones scales as v/N. Drifts in the amplitude of these tones, due to
laser or AOM noise, may lead to an imperfect set of ¢} weights and would manifest itself as an infidelity in the
applied J;; couplings. Likewise, unexpected motional-mode frequency drifts would also lead to a sub-optimal
set of ¢} weights and result in lower fidelity operations. These observations suggest that significant attention
should be given towards laser intensity stabilization [68], rf stabilization [69], and frequent characterization
of the motional modes. Further robustness to motional mode drift may be also achieved by applying
additional frequency tones to satisfy additional constraints on the ions’ phase space trajectories, following
the approach in [29]. The ultimate limitation of implementing multi-mode global drives will be the
requirement to resolve all vibrational mode frequencies, which sets a minimum gate time T > 7/ Awmin,
with Awp;, the minimum frequency splitting between modes. For a 30-ion chain of 'Yb™ ions and
standard trap parameters, we estimate a minimum gate time of T > 300 us, which is reasonable compared to
the T 2 1 ms gates common in adiabatic quantum simulation experiments [2].

Within this framework, we expect that the efficiency of further classes of quantum circuits may be
improved upon, beyond the Ising models, n-body gates, and QFT circuits explored here. For instance, future
theoretical directions include the implementation of quantum error correction protocols (which rely upon
multi-body operators applied to subsets of qubits), decomposition of algorithms such as quantum phase
estimation and period-finding using multi-mode global drives, and efficient block encodings of Hermitian
operators for Hamiltonian simulation. Compared to the traditional approaches using direct two-qubit gates,
this work provides an alternate paradigm for synthesizing quantum logic operations of direct relevance,
without the steep experimental overhead associated with individually-addressed entangling beams.
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