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ABSTRACT: The accurate computational study of wavepacket
nuclear dynamics is considered to be a classically intractable
problem, particularly with increasing dimensions. Here, we present
two algorithms that, in conjunction with other methods developed
by us, may result in one set of contributions for performing
quantum nuclear dynamics in arbitrary dimensions. For one of the
two algorithms discussed here, we present a direct map between
the Born—Oppenheimer Hamiltonian describing the nuclear
wavepacket time evolution and the control parameters of a spin—
lattice Hamiltonian that describes the dynamics of qubit states in an
ion-trap quantum computer. This map is exact for three qubits, and
when implemented, the dynamics of the spin states emulates those
of the nuclear wavepacket in a continuous representation. However,
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this map becomes approximate as the number of qubits grows.

In a second algorithm, we present a general quantum circuit decomposition formalism for such problems using a method called the
Quantum Shannon Decomposition. This algorithm is more robust and is exact for any number of qubits at the cost of increased
circuit complexity. The resultant circuit is implemented on IBM’s quantum simulator (QASM) for 3—7 qubits, without using a noise
model so as to test the intrinsic accuracy of the method. In both cases, the wavepacket dynamics is found to be in good agreement
with the classical propagation result and the corresponding vibrational frequencies obtained from the wavepacket density time
evolution are in agreement to within a few tenths of a wavenumber.

I. INTRODUCTION

Protonated,' ™ neutral,* and hydroxide-rich water clusters®™
have been widely studied, both experimentally''™"> and
theoretically'®™"" due to their broad significance in multiple
areas including atmospheric,zo_22 biological,u_27 and con-
densed phase chemistry.””* Substantial efforts have been
devoted to understanding the relatively high efficiency of
organic reactions on the surface of water droplets.”’”*
Additionally, protonated water clusters in polymer electrolyte
membrane fuel cells*”*’ are thought to mediate proton
transfer.

Experimental studies on vibrational properties of such
hydrogen-bonded cluster systems have blossomed due to the
development of sophisticated cluster-based measurement
techniques such as argon-tagged single-photon action spectral
methods®’ and the infrared multiple photon dissociation
(IRMPD)>* approach. Both gas-phase single-photon®"** and
multiple photon®*°*~>” vibrational action spectroscopic
techniques have been crucial in deciphering the precise
signatures that contribute to dynamics and spectroscopy in
hydrogen-bonded systems. However, the accurate computa-
tional modeling of the processes involved in these experiments
requires both the quantum mechanical treatment of electronic
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and nuclear motion.>**7%" Due to the light mass of the

transferring proton involved in such hydrogen-bonded systems,
these systems often exhibit quantum effects such as hydrogen
tunneling and zero point energy,(’z_é8 and the correlated
behavior of multiple nuclear degrees of freedom,>**%3%¢1%9=7
In such scenarios, classical approaches such as approximating
nuclear motion to be harmonic about the equilibrium
geometry’®”” fail to accurately predict the static and dynamic
properties of such hydrogen-bonded systems.">>>**>*" A full
quantum mechanical treatment of the nuclear degrees of
freedom and its associated electronic interactions is often
needed** %7798 to account for such quantum nuclear
effects, including multidimensional effects, in the computation
of their molecular properties. This then requires the
computation of potential energy surfaces for describing the
nuclear degrees of freedom in such systems and the explicit
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time evolution of the quantum nuclear wavepacket on the
potential landscape. However, the study of such multidimen-
sional quantum nuclear processes is complicated by (a) the
steep algebraic comgputational scaling of accurate electron
correlation methods™ and (b) the exponential scaling of
quantum nuclear dynamics with the number of quantum
nuclear degrees of freedom.**~%°

Over the years, several classical algorithms have been
develogped to improve the comgutational scaling of elec-
tronic”’ " and nuclear dynamics®'?*~'% problems. Orthog-
onally, recent years have also seen the development of
quantum computing algorithms for performing electronic
structure calculations on near-term quantum hardware."”’ """
These have been complemented by state-of-the-art experi-
ments''*~"** for strongly correlated electrons. In addition,
quantum simulations of vibronic spectra,'>*~"** wavepacket
evolution through conical intersections,"*”~'** and algorithms
for reduced-dimensional reactive scattering studies'*>'*® have
also been undertaken. However, the work in refs 125—134
invokes the harmonic approximation for nuclear dynamics
which, as stated above, does not appropriately describe
quantum nuclear effects within hydrogen-bonded systems
emanat'n§ from anharmonic effects and mode-coupling
effects.' ~°¥%L137 The treatment of nuclear quantum
wavepacket dynamics on anharmonic potential surfaces
through quantum algorithms and through quantum hardware,
that also include multidimensional mode-coupling effects, has
received very little attention. This paper, along with refs
138—141 are an important step in the direction of treating
anharmonic hydrogen-bonded systems. To the best of our
knowledge, refs 138—140 are the only studies on this topic to
date.

In ref 138, a Hamiltonian mapping protocol was introduced
to simulate the quantum nuclear dynamics in proton transfer
reactions on spin—lattice quantum simulators. This was
successfully implemented on Sandia National Laboratories’
Quantum Scientific Computing Open User Testbed
(QSCOUT) ion-trap system'® to study the vibrational
signatures of the transferring proton in a short, strong
hydrogen-bonded system. An improvement of this scheme to
higher nuclear dimensions using a tensor-network-based
formalism was discussed in refs 140,142. A method to perform
a parallel quantum computation of quantum wavepacket
dynamics on a distributed set of ion-trap systems, along with
implementation on IonQ’s 11-qubit Harmony ion-trap
quantum systems is discussed in ref 140.

Quantum algorithms for simulating processes on quantum
simulators can be broadly divided into two major classes:
Hamiltonian (analogue) quantum simulation and unitary or
quantum circuit decomposition (digital). In this paper, we
discuss both an analog Hamiltonian-based and a quantum
circuit decomposition-based algorithm to study spectroscopic
features arising from anharmonic vibrations in small water
clusters using quantum wavepacket dynamics. Hamiltonian or
analogue quantum simulation proceeds by mapping a desired
Hamiltonian to the Hamiltonian of the quantum device. This is
done by programming the control parameters of the quantum
device Hamiltonian. The mapping protocol discussed
here'*®"*” simulates a chemical dynamics Hamiltonian on an
ion-trap quantum computer by computing the control
parameters for an Ising Hamiltonian, which describes the
dynamics of ions in the ion lattice. As a result, the ion lattice
dynamics directlycorresponds to the dynamics of the chemical
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system. The mapping protocol, however, is inherently
approximate and only works well for systems with specific
symmetries and for a small number of qubits; errors grow with
an increasing number of qubits in this algorithm. Quantum
circuit decomposition is more commonly used to write the
unitary time evolution operator corresponding to the
Hamiltonian of a system in terms of universal quantum gate
sets. The circuit model, in theory, can be extended to an
arbitrary number of qubits but suffers from increased circuit
depth and an exponentially increasing number of entangling
gates as we scale up to a higher number of qubits. This results
in increased measurement errors and loss of contrast in the
measured probabilities due to the low fidelities of the
entangling gates. For a more accurate implementation of
quantum nuclear dynamics problems, we discuss a quantum
circuit model-based approach to studying wavepacket dynam-
ics. This decomposition technique is based on Quantum
Shannon Decomposition (QSD).'** Notably, Quantum
Shannon Decomposition achieves CNOT gate counts closest
to the theoretical lower bound.'"* The decomposition is a
recursive gate decomposition technique, where at each
recursion the unitary operations are decomposed into known
quantum gate structures like the quantum multiplexors and
multicontrolled rotation gates. These quantum gate inter-
mediates have efficient gate decompositions in terms of
universal quantum sets that can be implemented on quantum
hardware. This algorithm is implemented for the first time here
for a chemical dynamics problem using a Qiskit simulator.

This article is organized as follows: In Section II, we discuss
the Hamiltonian mapping protocol that was developed in ref
138. This approach is exact for three qubits but becomes
approximate as the number of qubits grow. Hence, in Section
III, we outline the Quantum Shannon circuit decomposition
technique that is used to decompose the unitary propagator
corresponding to the nuclear Hamiltonian. The algorithm
presented in Section III yields a quantum circuit with the
number of entanglement gates close to the theoretical lower
bound'*’ and works for an arbitrary number of qubits. Both
techniques use the first quantized form of the nuclear
Hamiltonian computed in a continuous (grid) representation.
Numerical results are presented for both algorithms in Section
IV B and IV C for the anharmonic molecular vibrations of the
shared proton in short, strong hydrogen bonds®”'**~"* that
are present in protonated and hydroxide-rich water clusters.
These include explicit numerical propagation of the molecular
dynamics problem, the mapped spin—lattice dynamics
governed by Ising-type Hamiltonian as obtained from the
mapping protocol, and quantum circuit decomposition using
QSD. The Quantum Shannon Decomposition approach is
implemented on Qiskit, and results from quantum simulation
on a classical computer are provided here. No noise model is
included in the Qiskit simulations to allow us to gauge the
intrinsic accuracy of our circuit compilation technique. The
systems considered in Section IV are the H;O3 and H;O; ions.
These low-barrier, short, strong hydrogen-bonded sys-
tems” "7 are of fundamental significance in proton
transfer processes and have a critical role in the enhanced
mobility of protons and deuterons in condensed phase, in
biological ion channels and enzymes, and in fuel cells."*’~"**
We inspect the vibrational properties of these systems using
the quantum algorithms presented here. Conclusions are given
in Section V.
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Figure 1. Generalized Bloch sphere for an arbitrary number of qubits, along with the classification of basis states, is shown using red and blue

colors.

II. QUANTUM ALGORITHMS FOR WAVEPACKET
DYNAMICS: MAPPING PROTOCOLS FOR
SPIN—-LATTICE SIMULATIONS

The generalized form of the Ising Hamiltonian can be used to
describe the interactions of spin states on a spin—lattice. The
mapping protocol introduced in ref 138 relates a quantum
nuclear Hamiltonian, involving the nuclear kinetic energy
operator and the Born—Oppenheimer potential surface
obtained from electronic structure theory, to a generalized
Ising Hamiltonian realizable on a range of quantum systems
including ion trap quantum simulators. The inherent
symmetries of the Ising Hamiltonian that describe the
dynamics of effective spin states on a lattice (outlined in
Section II A) and that of the Born—Oppenheimer potential
and nuclear kinetic energy (Section II B) are exploited to arrive
at the map. In the following sections, we provide the
transformations and their geometric interpretations that expose
these symmetries in Ising (Section II A) and the nuclear
Hamiltonian (Section II C). The parameters of the Ising
Hamiltonian that are programmable on a lattice of ions are
computed from the quantum nuclear Hamiltonian, and the
algorithm is summarized in Section II C.

The mapping algorithm discussed here differs from mapping
methods developed for electronic structure.>* First, the
mapping here pertains to quantum nuclear dynamics and
hence, the Jordan-Wigner transformations'>> do not turn out
to be applicable. Second, the Hamiltonian that describes
wavepacket dynamics is introduced here in first quantized form
to accurately represent all anharmonic effects in the Born—
Oppenheimer potential energy surface. By contrast, the
mapping protocols for electronic structure generally begin
with a second quantized form of the Hamiltonian that includes
the commutation properties of the corresponding field
operators. A collection of nuclear degrees of freedom, on the
other hand, may have Bosonic and Fermionic constituents. For
example, the hydrogen nucleus is a Fermion, but Deuterium is
a Boson. Additionally, the intrinsic spin statistics of nuclear
degrees of freedom arising from permutation symmetries of the
wave functions that describe the constituent nuclear degrees of
freedom do not play a significant role under ambient
conditions in biological, materials, and atmospheric systems.
As a result, most such quantum dynamics studies are currently
constructed on classical computing platforms using basis sets
and on grids in first quantized form.**'**'>” Our approach is
applicable to the vast literature of quantum nuclear wavepacket
dynamics work constructed using first quantization.
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This section is organized as follows: The mapping algorithm
that describes the connection between the generalized Ising
model (eq 1) and a quantum nuclear Hamiltonian, which
contains the nuclear kinetic energy operator and the electronic
potential energy surface, was introduced in ref 138. The key
aspects of this algorithm are based on the symmetry of Ising
Hamiltonian. In Section II A, we present a geometric
interpretation to arrive at these same symmetries, which is
different from that discussed in ref 138. The mapping results
are presented in Section II C along with a discussion of
limitations. In Section III, we present the more general QSD
formalism.

A. The Role of Geometric Structure in Generalized
Ising Hamiltonians toward Achieving a Map to
Quantum Nuclear Dynamics. Any two-level quantum
system can be mapped to a spin-1/2 particle in an effective
magnetic field. In the ion trap used in ref 139, the qubit levels
encoded onto the S, , state, namely, |F = 0, m = 0) and IF =
1, my = 0) hyperfine “clock” states of 7*Yb* ions are mapped
onto the two levels of a spin-1/2 particle and denoted as 10)
and I1), respectively.'*” In its most generalized form, the Ising
Hamiltonian that can be implemented on such an ion trap is
given by,

N-1

(HIT=Z

i=1 j

zZ

Uja'ey +Jjo’e) + Jjoo7}
i

Vv

M=

+ {B'6" + B/’ + B}

1 (1)

where {07, ¢/, 67} are the Pauli spin operators on the i-th lattice
site along the respective spatial direction. The energy gap
between the states at each ion, i, and their relative orientations
are controlled by local effective magnetic fields, {B}, B}, B},
and the spin—spin coupling between different lattice sites, i and
j, is controlled using laser pulses, also spatially nonisotropic,
and represented as {]?;, T ]3} It is critical to note that the
expression above is more general than the form of the Ising
Hamiltonian commonly used in condensed matter
physics,**7'°" NMR, other zero-field splitting studies'®*
where only nearest-neighbor interactions or spin—lattice sites
within a certain spatial distance may interact and magnetic
fields only across certain directions are considered, and
transverse Ising models'®™'% implemented for adiabatic
quantum computing for electronic structure studies.'>* The
magnetic fields and intersite coupling parameters, {7, B/} with
¥ € {x, y, z}, form a set of programmable parameters that can
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Figure 2. Recursive block structure of the Ising Hamiltonian in eq 1 for three (a) and four (b) qubits. The upper triangular portion of the
Hamiltonian matrix is shown (excluding the diagonal). The computational basis is partitioned into odd, {$**"~! 100--)}, and even, {S**" 100---)},
spans of the total spin raising operators. The interaction between states li) and Ij) is the ij™ matrix element of the ion trap Hamiltonian. For example
in (b), (01011HI1111) = J{; — J5. The off-diagonal blocks that couples the odd and even spans of the total spin-raising operators are marked in

green. Zero coupling is represented by a “dot”.

be manipulated to simulate a general form of the Ising-type
Hamiltonian, as in eq 1, on a lattice of ions.

The Ising Hamiltonian structure exhibits inherent symme-
tries in terms of these control parameters that can be exploited
to map a class of Hamiltonians to the quantum simulator. In
ref 138, we show how a certain permutation of the
computational basis in which such Hamiltonians are conven-
tionally represented, reveals a block structure of the
Hamiltonian. In this article, we provide a geometric
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interpretation for the computational basis set ordering scheme
through a generalized representation of the Bloch sphere.
Through this geometric representation, we illustrate the
classification of the computational basis that exposes the
inherent symmetries present in the Ising Hamiltonian.
Consequently, we discuss and illustrate the structure of the
Ising Hamiltonian in this ordered basis set.

Conventionally, the spin—lattice Hamiltonian is represented
in the 2"-dimensional space of spin-1/2 states where each spin

https://doi.org/10.1021/acs.jctc.4c01343
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https://pubs.acs.org/doi/10.1021/acs.jctc.4c01343?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01343?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01343?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01343?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c01343?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

state corresponds to a two-level system that can be either up or
down and equivalently 10} or I1). A Bloch sphere (Figure 1la)
provides a geometric representation of all pure states of a
single-spin system. To generalize the Bloch sphere representa-
tion for a single spin to a higher number of spins, we borrow
the idea of g-sphere from IBM Qiskit,'*° to geometrically
represent all 2V spin states of an N—qubit system. Figure 1
complements our discussion.

The g-sphere for an N—qubit system (N > 2) is divided into
rungs as follows. We begin by Elacing the all-down state 100
0) at the bottom pole or the 0" rung of the g-sphere. We then
apply the total spin raising operator to this state, one spin at a
time to obtain all other states in the higher rungs of the sphere.
The action of the total spin raising operator once on the 0"
rung yields all N-states that correspond to a single spin up and
N — 1 spins down. These are represented on a single plane
close to the 100---0). See Figure 1. The action of the total spin-
raising operator on all states of this rung yields all possible
N(N — 1)/2 states of the 2™ rung, and these states are
represented on the next plane. As we go to higher qubits, all
possible NC, states for the n™ rung are obtained. This way, all
basis states in the spin—lattice system are represented on the q-
sphere and the number of states in each rung of the g-sphere
are identical to those encountered in Pascal’s triangle. All
combinations of spin states with the same total S_-value occupy
the same rung.

The geometrical representation of the N—qubit basis states
using the g-sphere representation lends itself naturally to the
classification of basis states we discuss for representing the
Ising Hamiltonian. In ref 138, we note that the basis vectors
created from acting an even number of lattice-site spin raising
operators, {S!} on the full down spin state, 100---}, yield the set,
{100-+-); S7 S 100-++); 7 S S S 100-:+); -}, that are grouped
as part of one block of the ion-trap Hamiltonian and those that
are obtained using an odd number of raising operators: {S; |
00--); S S} S; 100-+-);-+-} are grouped into a second block. The
states belonging to the same block are represented using the
same color (blue or red) in Figure 1. As can be seen in the g-
sphere representation in Figure 1, the action of the odd and
even number of site-specific spin-raising operators on the all-
down spin state 100..00) corresponds to its alternating rungs.
The alternating rungs can now be grouped to form the two
basis set blocks in which the Ising Hamiltonian has a block
structure, as discussed below and shown in Figure 2.

The diagonal elements of the Ising Hamiltonian, when
represented in the computational basis, are linear combinations
of all {]f], B;} parameters. Figure 2 does not show these to
maintain clarity. Since, inside each block of the permuted
computational basis, the bases differ by at least two spin flips,
the bases inside each block are connected by spin—spin
coupling parameters {J§, Ji} (shown in shades of purple in
Figure 2a—c). Between the two blocks, the pairs of bases that
differ by a single-spin flip or an odd number of flips are
coupled by the {Bf, B/} parameters, and hence those form the
elements of the off-diagonal blocks of the Ising Hamiltonian in
this permuted basis (as shown in green shades in Figure 2a—c).
The structure derived here is completely general for N qubits,
as can be seen in Figure 2a—c for two, three, and four qubits,
respectively.

Furthermore, the diagonal and off-diagonal blocks for the N-
qubit Ising Hamiltonian can be recursively obtained from those
of the N — 1 qubit Hamiltonian. This recursive structure
within each block of the Ising Hamiltonian is illustrated in
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Figure 2a—c using a gradient in colors, purple for the diagonal
blocks with Ji + J; elements and green for the off-diagonal
blocks with Bf =+ iB! matrix elements. For example, the
recursion can be seen as follows for the diagonal block
containing elements with spin—spin interaction terms. We
begin with the elements of the diagonal block for a two-qubit
Ising Hamiltonian as in Figure 2a, ]f; + ]{; fori=1,andj=2
corresponding to the only spin—spin interaction in a two-qubit
system shaded the darkest in all Figure 2a—c. The introduction
of a third qubit introduces all possible spin—spin interactions
J5 = J5 for all i <2 as shown with the next shade of purple in
Figure 2b. Similarly, all possible spin—spin interactions J; + Ji,
for i < 3 also appear in the diagonal blocks of the 4-qubit Ising
Hamiltonian as shown using the lightest shade of purple in
Figure 2c. The 2- and 3-qubit diagonal block elements are
nested in the 4-qubit Ising Hamiltonian. Therefore, with each
additional qubit, the structure of the N — 1 qubit Ising
Hamiltonian is preserved, and blocks containing Jiy; + Fy for all
i < N — 1, the interaction of the Ntt spin with the N — 1 spins
are added. The off-diagonal blocks also have a similar recursive
structure, wherein, with the addition of a qubit, a block with
elements BY; + iB); is added to the Ising Hamiltonian. This is
made clear in Figure 2a—c with the gradation in green used for
B} + iB}, B; + iB}, and BY; + iB}; elements in the Hamiltonians.
This block form of the Ising-type Hamiltonian and the
associated structure in Figure 2, is a significant general
result."*® To the best of our knowledge, such a structure of
the general Ising model was first discussed in ref 138, and we
see that this analysis is critical for mapping arbitrary problems.
B. Nuclear Hamiltonian: Transformations That Yield a
Block Diagonal Structure. The nuclear Hamiltonian is
computed by using a coordinate representation, where the
dimension along the donor—acceptor axis is discretized into 2
points. The matrix elements of the nuclear Hamiltonian, Hy
in this coordinate representation, {lx;)} is therefore given by

(dHylx'y = K(x, ') + V(x)8(x — ) (2)

The potential energy for the quantum dimensions is computed
using standard electronic structure methods for which further
details for each system are provided in the results section. The
nuclear kinetic energy in this grid representation is
approximated using the analytic banded Toeplitz Distributed

Approximating Functionals (DAFs).'¢”'%®
K(x, x) = K(lx — «1) = }

_le (x _ x/)z
expy — 3
| Haan+2
= 4 ) n!
3)

4mo\2m 20
where H,, +2(%) are the even order Hermite polynomials

that only depend on the spread separating the grid basis
vectors, lx) and Ix'), and Mp,p and 6 are parameters that
together determine the accuracy and efliciency of the resultant
approximate kinetic energy operator. The nuclear Hamiltonian,
Hyy in this coordinate representation, {lx;)}, therefore has a

)

banded Toeplitz structure due to the structure of the kinetic
energy when expressed in terms of DAFs. This banded
Toeplitz representation of the DAF approximation for the
kinetic energy operator in eq 3, where the property of its
matrix elements, K; = K(li — jl), has a critical role in reducing
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the nuclear Hamiltonian to the form of H; as discussed in ref
138 and summarized in Section II C.

The Householder and Givens transformations are com-
monly used matrix transformations that allow arbitrary
matrices to be reduced to canonical forms.'® Here, we use a
sequence of Givens transformations to transform the banded
Toeplitz form of the nuclear kinetic energy operator into a

block diagonal form, H,,, that is commensurate with that of
the Ising Hamiltonian in the permuted spin basis, as discussed
in Section II. The details of the exact transformation are
presented in section A of the Supporting Information (SI).
Furthermore, this block diagonal form is maintained when the
one-dimensional potential energy surface belongs to the C,
point group, whose only symmetry operations are identity and
reflection about a mirror plane. For cases where such
symmetry does not exist, the more general set of trans-
formations shown in Section III may be employed. The Givens
matrix elements are the characters of this point group, and
thus, with each Givens transformation, a rotation is effected in
the two-dimensional plane of the pair of symmetrically located
grid basis states. The resulting Givens transformed basis, {I;) }
from the corresponding grid basis, {lx;)} is illustrated in Figure
3 for the case of eight grid points. We, therefore, exploit the

Nuclear Hamiltonian representation

Lo | 1e0) [ 1) [ 1a) || 1) | 1) ][ 1) [[ 1) |
{1} — {1zn \ Givens rotations

1x0) + |x7) | 1x2) + |%6) | [22) + |xs) | |2z} + [xa) [ 1xa) — |23} | Ixs) — x2) | [x6) = Ix1) | Ix7) = Ix0)
V2 V2 V2 V2 V2 V2 V2 V2

|111)
[ ]
[110) [101)
Block IT
|o11)
|100) |001)
]
|000)

Ising Hamiltonian representation

Figure 3. Classification of the Givens transformed grid bases and the
permuted computational bases in the g-sphere representation. Note
that the Givens rotations result in symmetric and antisymmetric
combinations of pairs of symmetrically located grid basis states. The
map between the transformed Hamiltonians results from a map
between the corresponding blocks of the basis of representation.

banded Toeplitz symmetry of the DAF kinetic energy operator
and symmetry of the potential energy surface. The details of
this transformation can be found in SI section A and ref 138,
where the explicit transformations of each matrix element of
the transformed Hamiltonian are given in terms of the
elements of the banded Toeplitz Hamiltonian and the
elements of the Givens matrices.

C. Obtaining lon-Trap Parameters, {B, J;7} from
Transformed Nuclear Hamiltonian. As seen from the
discussions in Sections II A and II B, the Ising Hamiltonian
and the nuclear Hamiltonian both have block structures
resulting from the permutation of the computational basis and
the Givens transformation of the grid basis, respectively.
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Owing to their commensurate structures, a direct map between
each element of the nuclear Hamiltonian, H,; in the {Ix)}
basis to the corresponding elements of the Ising Hamiltonian,
H;r can be generated to compute the Ising Hamiltonian
parameters. Our goal is to use the diagonal and off-diagonal
elements of 7i(M01 to obtain the sets of ion-trap parameters {B,
Ji} and {Jij, Ji}, respectively. This establishes a map between
the given transformed grid basis and the permuted computa-
tional basis, as shown in Figure 3. The mapping expression
between the elements of the molecular Hamiltonian and the
corresponding elements of the ion-trap Hamiltonian may be
written as

(@ H %) = Qi) @)

for I2) corresponding to the computational bases in blocks I or
II for the Ising Hamiltonian (as discussed in Section II A and
shown in Figures 1 and 3). Using eq 2 and the transformations
discussed in Section II B (detailed in SI A) to write the
elements of F,, and the corresponding Ising Hamiltonian
matrix elements for eq 1, for the left and right sides of eq 4
corresponding to the diagonal elements only, we obtain

[I<(xi) xi) - K(x,'; xn_,')] + %[V(xz) + V(xn—i)]

N ) N-1 N o
=Y (B + Y X (-1
j=1 j=1 k>j
fori < n/2 (3)
[I<('xi7 xi) + I<(xi! xn—i)] + %[V(x;) + V(xn—i)]
N ) N-1 N o
=Y (DB + Y X (-1
j=1 j=1 k>j
fori > n/2 (6)

where @ on the right side denotes the addition modulo 2, 71,. is
the j bit of the bit representation of I1) with values 0 or 1 as
shown in Figures 1 and 2.

A detailed discussion on this map is provided in ref 138,
where it is shown that the ion-trap control parameters, {B; ],ZI}
are specific Hadamard transforms of (%|%H,.|%). In a similar

manner, the off-diagonal elements of Fy, are mapped to the
corresponding H,p elements to obtain the {Ji; Ji} parameters.
The map is approximate for a higher number of qubits, for
which the error estimates are provided in ref 138. In Figure 4,
the map is illustrated for the H;O3 system to be studied later
in the publication.

The reasons behind the intrinsically approximate nature of
the mapping algrithm are discussed in detail in ref 138. We
summarize the main features here. In essence, as the number of
qubits N increases, the Ising Hamiltonian parameters (B and ]
handles in eq 1) scale as,

{N+N(N - 1)/2} + {N(N - 1)} -» O(N?) (7)

Here (a) the first quantity, {N + N(N — 1)/2}, refers to the
parameters, {B}; ]3}, that form the diagonal elements of the
Ising matrix, (b) the second quantity on the left, {N(N — 1)},
refers to the parameters, {]f; + ]{}}, that control the off-diagonal
elements. This scaling and structure of the spin—lattice
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Figure 4. Outline of the mapping algorithm: The algorithm converts the Born—Oppenheimer potential surface and kinetic energy terms in a

quantum nuclear problem to a set of controllable ion-trap parameters,
states in an ion trap.

B {5 Jiy and J5}}, and facilitates the dynamical evolution of quantum

U
L 0 L
_____________ M-Ry
| | [ ! | !
-8 8
I I I I
7777777 M-Rz M-Rz
. @ | » @ i 1 l @
777:777 M-Ry 777: 777777 :777 M-Ry 777: 777777 :777 M-Ry 777: 777777 :,7, M-Ry 777:777
&9 @ @ ¢ @0 0@« ' @ ¢ (10 '@
' MRz ! | MRz | | M-Rz | | M-Rz | | M-Rz | ' M-Rz | ' M-Rz ' M-Rz |
! ' ! I I I 1 [} I I ] I I | 1 [}
-15 -13 -11 -9 =7 -5 3 -1l 1 3 5 7 9 11 13 15
AVARA Y vy, INZ  ZYZ  ZYZ ZYZ INZ IYZ IYZ Y7 INZ  IYZ  7YZ ZYZ Y7
(b)
4[0] 1 1 7
q[1] ] [
14 12 10
a2l —{15

Figure S. (a) Decomposition of a 3-qubit unitary, U, into one and two

-qubit gates. The decomposition involves alternate layers of the CSD (red)

and VDW (blue). M-Rz(Ry) are N and N — 1 qubit multiplexed Rz(Ry) gates which can be further decomposed into a set of CNOT and Rz(Ry)
gates. The ultimate layer (gray) involves decomposition into single-qubit gates. (b) Schematic of the circuit resulting from the Quantum Shannon
decomposition in (a). All single-qubit operations (on q[2]) are decomposed using the ZYZ decomposition, while all multiqubit operations are

either multicontrolled R, or R, operations as discussed in Section IIL

Hamiltonian,"** may restrict the mapping of a general unitary
operator, since a general 2N x 2N unitary matrix may have

O(2") independent elements. Thus, as the number of qubits
increases, the mapping algorithm becomes more and more
approximate as the number of equations given by eqs 5 and 6
exceeds the number of spin—lattice parameters {B!; Ji}.
However, it may also be possible to reduce the number of
actual paramenters within the 2V X 2" unitary matrix and these
aspects will be considered in future publications.'*’

lll. QUANTUM SHANNON DECOMPOSITION:
REDUCTION OF ARBITRARY UNITARY
OPERATIONS INTO QUANTUM CIRCUITS

The mapping protocol necessitates that the number of {Bj, B!,

B#}, and {]?;, Jiy i} parameters in the Ising Hamiltonian match
the number of parameters in the molecular Hamiltonian. Since
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we also consider a fine grid for our potential energy surface
with an equivalent increase in the number of qubits, it is critical
to note that the molecular Hamiltonian matrix size grows
exponentially while the number of Ising Hamiltonian
parameters only grows quadratically (see ref 138). Con-
sequently, the map between the molecular Born—Oppen-
heimer Hamiltonian and the Ising Hamiltonian becomes more
and more approximate as the number of qubits grows. To
address this and achieve an accurate treatment of the chemical
dynamics process for a larger number of qubits, we introduce a
quantum circuit decomposition method here. The unitary
propagator corresponding to the molecular Hamiltonian is
written as a quantum circuit, which is then used to simulate the
temporal evolution of the molecular system. It has been shown
that an arbitrary unitary matrix can be decomposed into a
universal quantum gate set consisting of a few single-qubit

https://doi.org/10.1021/acs.jctc.4c01343
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gates along with a two-qubit entangling gate.'”” Several matrix
decomposition techniques such as the QR, Givens, House-
holder, and cosine—sine decomposition have been used to
obtain quantum circuits for arbitrary unitary operators'’*'”!
resulting in universal quantum gate sets. In this section, we
adapt the Quantum Shannon decomposition (QSD)'*’ for the
quantum circuit decomposition of unitary matrices obtained in
quantum chemical dynamics processes. The decomposed
unitaries are equivalent to unitary gate operations that can
be implemented using standard quantum gates from a universal
gate set on quantum hardware. This allows execution of an
arbitrary unitary operation as a concatenated sequence of
universal gates on a given quantum hardware. The
decomposition scheme involves two well-known matrix
decomgosition schemes—the cosine—sine decomposition
(CSD)"7*™""* and the joint eigenvalue-based decomposition
of block diagonal unitaries referred to here as VDW'”! scheme.
A brief description of the algorithm is provided below. One key
outcome from the algorithm below is that the number of
entangling gates in this algorithm can be estimated at

%4” - %2" which is close to the theoretical lower bounds to

the number of CNOT gates, i(4’l — 3n — 1), as discussed in

ref 143.

We begin by considering a 2~ by 2" unitary matrix that is to
be implemented on a quantum computer by using universal
gates. We consider the universal gate set {Ry(ﬁ), R,(0),
CNOT}, consisting of single-qubit rotation operations, R,(6)
and R,(6) that affect rotations about the y and z axis of the
Bloch sphere by arbitrary angles 6, and the two-qubit
operation, CNOT. A flow of the decomposition is provided
as a tree diagram in Figure Sa. The CSD (shown in red in
Figure Sa) and VDW (shown in blue in Figure Sa) steps
iteratively break down the 2" by 2" unitarily to a sequence of
these single- and two-qubit operations. The CSD decomposes
the unitary matrix, U, into a product of three unitaries with
distinct structures,

Ly 0 )c —s)(Ry O
0 L, (S C)[O R, (8)

where the left(L) and right(R) matrices are block diagonal
unitaries with blocks Ly, L; and Ry, R}, respectively. C and S
are diagonal matrices with entries cos(e;) and sin(a;),
respectively, for i = 0 — 2N7!, This cosine—sine (CS) matrix
(node 0 in Figure S5a) is a multiple-control R, gate. A
multicontrol'*’ gate can be cast as an N-qubit generalization of
a conditional gate in a quantum circuit, wherein each of the
2N7! conditions implemented using N — 1 control qubits
results in a different unitary operation on the N target qubit.
These may be referred to as CCC:--R, operations. A
multicontrol R, can, therefore, be thought of as a conditional
operation of a R (@;) rotation on the target qubit depending on
the i condition enforced by N — 1 qubits. This simultaneous
operation of the 2! R (a,)’s for all values in {a;} can be
decomposed further and implemented using 2¥~" CNOT’s and
2V7' R/(6) rotation gates. The rotation angles 6, can be
obtained from linear combinations of @;’s using a Gray code
method as outlined in ref 175. Classically, one can think about
this as 27! conditionality statements, one condition
representing a specific R, rotation; only, on a quantum
computer these are meant to be executed in parallel. While
such operations may in principle represent the true power of
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quantum devices in the future, in the NISQ era,'’*'” these
operations are deeply limited by the number of CNOT gates
required to implement them.

The block diagonal unitaries on the left and right in eq 8
(red empty nodes in Figure Sa), are N-qubit conditional gates,
known as quantum multiplexors, with a single-qubit control
and corresponding conditional operation on N — 1 target
qubits. At this point, it is important to reiterate and note the
difference in the structures of the block diagonal L, R matrices
and the CS matrix and the resulting multiqubit gates. While the
N-qubit operation corresponding to the CS unitary matrix, as
discussed earlier, has multiple controls (precisely 2¥~" for an
N-qubit unitary), and a single-target qubit, that for the L, R
matrices have a single control with N — 1 target qubits. This
decomposition technique thus exploits these two general-
izations to multiqubit gates to build the entire quantum circuit
corresponding to U. The VDW transformation, as given by eq
9, is a technique for decomposing such quantum multiplexor
gates (obtained from the L and R matrices above), with a
single-control and multiple-target qubits, into basic quantum
circuit unitaries. The L and R matrices from eq 8 are thus
further decomposed into,

o Y Y O Y R

The VDW is critical in that left and right block diagonal
matrices containing V and W, respectively, correspond to N —
1 qubit operations in a quantum circuit. Therefore, each VDW
step in the decomposition halves the dimension of the unitary
matrix. This step is shown in blue in Figure Sa and the V and
W matrices are blue nodes in Figure Sa. The V and W matrices
are further decomposed by using CSD in the next step. The
diagonal matrix, D, (node —8 for L and 8 for R in Figure Sa) is
a multicontrol R, gate (similar to the multicontrol R, operation
for the CS matrix) and can be decomposed further into a
sequence of 2V"' CNOT’s and 2! R (0) gates, similar to the
decomposition of the cosine—sine matrix as a multiplexed
R,(0). As noted above, these multiplexed R,() operations are
also akin, now, to 2N72 conditionality statements. Following N
— 1 steps of alternating CSD and VDW steps, the resultant
matrices are single-qubit units, which are further decomposed
using the ZYZ scheme for arbitrary single-qubit unitaries. The
multiplexors are decomposed into single-qubit rotation gates
and CNOT gates using a gray code implementation as outlined
in ref 175. Thus, the QSD yields a quantum circuit of
multicontrolled Ry(ﬁ) and R,(#) gates, and single-qubit
unitaries, which have standard procedures to be further
decomposed into the gates in the universal gate set {R, R,
CNOT}. The numbered nodes of Figure Sa correspond to
these multicontrolled and single-qubit unitaries, and for clarity,
the circuit schematic corresponding to the decomposition is
provided in Figure Sb. Note that the order is reversed in the
quantum circuit for showing the action of U on an initial qubit
state.

The number of gates in any standard implementation of this
decomposition is estimated from the implementation of the
multicontrolled R (6) and R,(0) gates. This scheme has the
advantage that when a fixed gate set is used to construct the
circuit, the resulting circuits have a constant circuit depth for
an arbitrary 2~ by 2V dimensional unitary. This implementa-
tion assumes the use of the universal gate set {Ry, R, CNOT}
as is apparent from the summary above, but is not limited by
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this gate set alone. Each 2~ by 2V multiplexed-R (R,) requires
2Nl CNOTs and 2N! Ry(RZ) gates using the gray code
implementation as discussed in ref 143. There is an inherent
structure in the decomposition scheme that is evident from the
decomposition of general multiplexed R, and R, gates as shown
in ref 143. This structure of the decomposition is irrespective
of the inherent symmetries present in the unitary itself.

IV. PROTON STRETCH DYNAMICS IN H;05 AND H;05
USING THE MAPPING PROTOCOL AND USING
QUANTUM SHANNON DECOMPOSITION

We examine the map in Section II and the quantum circuit
decomposition method in Section III by simulating and
comparing the quantum dynamics of the shared proton in the
protonated Zundel (H;O3) and the corresponding hydroxide
water clusters (H;05). In examining the mapping protocol, we
simulate and compare the dynamics of both the molecular
systems and their corresponding ion-trap dynamics on classical
hardware, independently. The Ising model Hamiltonian that
we consider for validating the mapping protocol is for a
trapped ion system with three qubits. In simulating the proton
transfer dynamics for each of the systems, we study the time
evolution of the initial nuclear wavepacket states prepared in
the respective permuted basis representations for the molecular
and Ising model Hamiltonians. As stated, the parameters in the
Ising Hamiltonian are determined, and thus controlled, by the
precomputed matrix elements of the molecular Hamiltonian.
In implementing the circuit decomposition technique, we
simulate the unitary time evolution of the transferring proton
in the water clusters by decomposing the unitary propagator,
e/ for each value of t into a sequence of quantum gates
using the Quantum Shannon decomposition method detailed
in Section III. We implement the resulting quantum circuits on
IBM’s QASM simulator using their software development kit,
Qiskit. In the following sections, we first introduce the
molecular systems that we consider to validate our mapping
protocol and circuit decomposition scheme. In Section IV A,
we outline the computational details of the potential energy
surfaces and the quantum nuclear Hamiltonian, followed by
the time evolution of the quantum nuclear wavepacket, for
both the systems under consideration in Sections IV B and IV
C.

Water clusters are an important class of molecular systems
found in many constrained environments such as biological
membranes, enzyme active sites,"”®'”® and ion channels.'®°
Water-mediated “proton wires,” for example, are routinely
invoked to explain charge transport across cell membranes and
the primary charge-separation step in photosynthesis. They
may also be confined within carbon nanotubes leading close to
ballistic transport,"*'~"** and are a critical aspect of polymer
electrolyte fuel cells."®* The lighter mass of the hydrogen
nucleus makes quantum nuclear effects critical in all such
cases; *>~'% additionally, the multidimensional quantum
nuclear effects in such systems arising from the vibrational
coupling between the proton transfer dimensions and other
orthogonal modes are also known to be critical in such
problems."*>°%¢!

The chemical systems considered in this article are specific
small protonated and hydroxide-rich water clusters. The
isolated H;O3 and H;05 ions are two of the most fundamental
structures involved in the proton transfer process. The anionic
H;03 complex is especially interesting because it involves a
strong low-barrier hydrogen bond (LBHB),”~>'*®'*
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phenomenon often introduced to explain the surprisingly
high rates of some enzyme-catalyzed reactions.'*>'**!#1%
Based on the studies of small molecules, such short, strong
HBs are often formed between functional groups with
comparable pK.’s and often result in a zero point energy for
the shared hydrogen higher than the barrier height energy for
proton transfer. The Zundel cation is a small prototypical
system with a proton shared between two water molecules
forming a short, strong hydrogen bond.****7¢""'37 This
system plays a fundamental role in the understanding of
processes such as the enhanced mobility of protons and
deuterons in condensed phase aqueous environments, in
biological systems, and several problems of interest in materials
chemistry, such as protonic conductors and fuel cells."”"~">*
Due to their central role in aqueous charge transport, the H;O3
and H;O; ions have been extensively investigated with
electronic structure theory and quantum nuclear dynam-
ics,"* ™ and both display stable configurations where one
hydrogen atom resides between the two oxygen atoms (e.g,,
[H,0-H--OH,]* and [HO---H--OH]").

A. Computation of the Nuclear Hamiltonians
Describing Proton Transfers in H;O0; and Zundel
Clusters. We compute one-dimensional potential energy
surfaces for the intramolecular proton transfer mode in both
H,03 and H;03, by first locating a stationary point for both
systems where the proton is symmetrically shared between the
donor and acceptor groups. For the case of H;O3, this
corresponds to the transition state, with one imaginary
frequency of the Hessian matrix corresponding to the
vibrational mode along the intramolecular proton transfer
direction. For the case of the protonated Zundel, however, the
geometry in which the donor and acceptor atoms symmetri-
cally share the proton corresponds to a minimum. Standard
electronic structure methods are employed to perform these
computations. Born—Oppenheimer potential energy surfaces
for one-dimensional proton motion along the donor—acceptor
axis are computed for these stationary point geometries. For
that purpose, we choose a one-dimensional grid along the
donor—acceptor axis with 2~ number of equally spaced grid
points, symmetrically located about the stationary point (grid
center). We perform electronic structure calculations at these
points, on a classical computing platform, at the level of theory
mentioned in Table I for the range N = 3 to N = 7. Details of
the electronic structure methods and total grid lengths for
these potential energy surface calculations are listed in Table I

B. Quantum Simulation of Proton Transfer Dynamics
in H;05; and Zundel Using the Mapping Protocol. We

Table I. Computational Details for Computing the Potential
Energy Surfaces for the Transferring Proton in Both Water
Clusters”

DA-distance grid spread no. of grid
system (A) level of theory (.5 points
H,0; 242 CCSD/6-311+ 0.66 8,16,32,64,128

+G(dp)
H.O! 239 B3LYP/6-311+ 0.66 8,16,32,64,128
+G(d,p)

“In all cases, the grid spacing ranges from 0.083 A (for 8 grid points,
that is three qubits) to 0.00S A (for 128 grid points, that is 7 qubits).
The finer grid spacings essentially approach the continuous limit,
given the mass of the proton and associated de Broglie wavelength.
Also see Figure 6 for associated smoothness of potential.
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Table II. Parameters and Characteristics of the Initial Wavepacket States Considered for Transferring the Proton in the Water

Cluster Systems”

H;0; H;03
initial wavepacket parameters [l (%) E° € o)l (%) E° €
wi(x; 0) = 8 (x—x,) %o = donor site 0.27 28.1 107" 0.08 35.1 1077
2
Y 0) = exp[—("z’—’z‘)] 6=01A u=00A 87.7 241 10715 93.71 2.6 1077
(x5 0) = X, exp[—E/kT ]y (x) T =300 K 99 1.34 1071 99.92 1.92 1077

“The ground state, ly,), overlap for each ly(x; 0)) and corresponding energy are reported for the case of N = 3. The mean absolute errors in
probability, €, computed between the classical propagated probability density, pc(x), and the probability density, po(x), computed using the
mapping protocol in Section II, are provided. “In units of kcal/mol. “As in eq 10.

examine the map by simulating the quantum dynamics of the
water clusters and the ion-trap dynamics on classical hardware,
independently. For that, we choose the initial wavepacket state
for the transferring proton in both systems in three different
ways in the grid representation (x), the details of which are
provided in Table II. The three initial wavepackets considered
here are designed to probe a broad range of energy. The
wavepacket y; (x; 0) is particularly harsh given that it samples
almost the full eigenspectrum, whereas the other two choices
populate the lower regions of the energy spectrum. The
corresponding Givens transformed wavepacket initial state is
considered for time evolution using the block diagonal
molecular Hamiltonian in the mapping protocol. Given the
direct map described in Section II C between the permuted
computational basis and the Givens transformed molecular
grid basis, the initial wavepackets for the Ising Hamiltonian are
chosen analogously to the initial wavepacket of the molecular
system. The wavepacket state, y; (x; 0), initialized on the end
of the grid close to the donor site (as in Table II), corresponds

%) — %)
to {7\5
corresponding initial state for the Ising Hamiltonian is chosen
o) = 14,)

V2
basis, {I1)}. we(x; 0) and wr(x; 0) are symmetric about the
center of the grid and are mostly concentrated on the first
block of the Givens transformed basis. The spin—lattice and
molecular wavepackets are then independently propagated
according to the transformed Ising and molecular Hamil-
tonians and compared to gauge the accuracy of the quantum
simulation.

Given the map between the matrix representation of the
Ising Hamiltonian and the Givens transformed molecular
Hamiltonian (in eq 4), as discussed in ref 138, the ion-trap
hardware initial wavepacket state is directly propagated by the
choice of {Bl; ]Z} for arbitrary time-segments. The time-
dependent probabilities resulting from the projection of the
resultant time-dependent wavepacket on the computational
basis, at each interval of time, are used to compute the
difference between the classical and quantum algorithms:

€= % / dtziN / dxlpy (x) = o)

where po(x) and pc(x) are the quantum and classical values of
the wavepacket density, respectively, N is the number of qubits
(ions), and T is the total simulation time. The resultant errors
are listed in Table II.

Given the exact match between the spin—lattice dynamics
and the quantum chemical dynamics, the features present in

} in the Givens transformed basis. The

analogously to be { } in the permuted computational

(10)
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ion-trap dynamics must also exist in the chemical dynamics
problem. Thus, through the isomorphism constructed above,
our algorithm allows the ability to extract properties of the
chemical systems from the corresponding Ising Hamiltonian
dynamics on the ion trap.

C. Quantum Simulation of Proton Transfer Dynamics
in H;05 and Zundel Using Quantum Shannon Decom-
position. The proton dynamics in the water clusters as
simulated using the mapping protocol is exact for the case of N
= 3. However, the number of grid points in that case does not
capture the important characteristics of the potential energy
surface, as is clear from Figure 6. We therefore simulate the

energy (kcal/mol)

0.0 01

grid (A)

03 02 01 02 03

Figure 6. One-dimensional potential energy surfaces for the proton
along the donor—acceptor axis in H;O, computed using a range of
grid separations (refer Table I). The surfaces converge with increasing
gridpoint densities (64 and 128 for N = 6 and N = 7, respectively).
The low barrier height is shown in the inset for all gridpoint densities.

circuit decomposed unitary evolution of the proton wavepacket
for more accurate representations of the chemical problem for
N = 3 to 7 qubits. The unitary propagator, e "%, for each
value of t are decomposed into a sequence of quantum gates
using the Quantum Shannon decomposition method detailed
in Section III. This decomposition will result in a significantly
lower number of gates since the number of gates remains
constant compared to a Trotter-based decomposition where
the circuit depth and gate counts double with subsequent
Trotter steps. We implement the resulting quantum circuits on
IBM’s QASM simulator using their software development kit,
Qiskit. Probability densities are measured after unitary

https://doi.org/10.1021/acs.jctc.4c01343
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Table III. Mean Absolute Errors in Probability (eq 10) Computed between the Classical Propagated Probability Density p(x)
and the QASM Simulated Probability Densities, pQ(x), Using the Circuit Decomposition Method Summarized in Section III*

pubs.acs.org/JCTC

€ (eq 10) for H;O3 € (eq 10) for H;05

initial wavepacket N=3 N=4 N=S§ N=6 N=7 N=3 N=4 N=S§ N=6 N=7
yi(x; 0) 6x107* 5x107* 4x107* 3x 107t 2x107* 7 x107* 5x107* 4x107* 3x 107t 2x107*
we(x; 0) 6x107* 5x 107 4x107* 3x107* 2x 107 7 x 1074 5x 107 4x107* 3x107* 2x 107
yr(x; 0) 6x107* 5x107* 4x107* 3x107* 2x107* 7x107* 5x107* 4x107* 3x107* 2x107*

“The number of shots is 1000. Errors are reported for different initial nuclear wavepacket states of the transferring proton in both water clusters for
all cases of N = 3 — 7. As the number of shots is increased, the error decreases, as noted in Figure 7.

x10~*

x10~*

6 number of shots
- 10!

3 qubits 4 qubits 5 qubits 6 qubits 7 qubits
(a)Initial state ¢ (z,0) for H502+

x1074

- 00 .10

number of shots
IS0 10

3 qubits 4 qubits 5 qubits 6 qubits 7 qubits
(b)Initial state ¥ (z,0) for H5O2+

x107*

- 00 .10

number of shots
- 10t

3 qubits 4 qubits 5 qubits 6 qubits 7 qubits

(d)Initial state i (x,0) for H3O5

- 00 .08

number of shots
- 10t

3 qubits 4 qubits 5 qubits 6 qubits 7 qubits

(e)Initial state g (x,0) for H305

- 00 . 100

x10~*

number of shots
- 100 .10 . 1P

3 qubits 4 qubits 5 qubits 6 qubits 7 qubits
(c)Initial state ¥y, (z,0) for H5O;r

x10~*

number of shots
- 100 . 107 w10

3 qubits 4 qubits 5 qubits 6 qubits 7 qubits

(f)Initial state ¢, (x,0) for H3O5

Figure 7. Vertical axes show probability errors, (€ in eq 10) for N = 3 — 7 qubits and for the different initial nuclear wavepacket states as a function
of the number of measurement shots on IBM’s QASM simulator for both chemical systems. Clearly the error reduces drastically with increasing

shots.

evolution at each time step. The errors in probability densities
for the circuit implementation and classical propagation are
computed using eq 10 and reported in Table III for the proton
transfer dynamics in the protonated and hydroxide water
clusters. Since the QASM simulator emulates the behavior of
an actual quantum device, in the absence of a noise model, the
precision of the estimated probabilities depends entirely on the
number of measurement shots used for each time step. For
about 1000 shots per time step, the error in the probabilities is
on the order of 107*, across all qubit cases, as reported in Table
III. We also report probability errors for an increasing number
of measurement shots and see agreement of up to 10~°. Figure
7 shows how the error improves as we increase the number of
shots from 10° to 10° for all qubit cases and appears to indicate
the accuracy of our QSD transformation algorithm. Fur-
thermore, we compute the Fourier transform of the measured
time-evolved probability densities, po(«, t), which results in a
spectrum with Fourier peaks corresponding to the frequency
differences among the energy eigenvalues. The relevant details
are provided in SI Section IV. We can extract the oscillation
frequencies of the shared proton in both chemical systems
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from these Fourier spectra of the frequency differences. In
Figure 8, we compare the lower-level eigenenergies obtained
from the Fourier transform of the time-evolved probabilities on
QASM to those obtained from the corresponding exact
diagonalization for all bound eigenstates for both chemical
systems for qubit cases N = 3 — 7. The absolute errors between
the QASM simulated eigenenergies and the exact diagonaliza-
tion results are well below 1 kcal/mol for the lower energy
levels for H;O; and H;0;.

V. CONCLUSIONS

The promise of solving exponentially complex problems
efficiently using quantum computing hardware and associated
quantum computing algorithms software is a rapidly evolving
research frontier.'”” While we are in the early stages of this
quantum revolution, there is a wide set of scientific and
technological areas that can benefit from such developments.
However, true progress in such areas can only be achieved by a
rigorous study and understanding of the electronic structure
and dynamics of complex materials, thus requiring accurate

https://doi.org/10.1021/acs.jctc.4c01343
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Figure 8. Eigenenergy differences between the classically computed (exact diagonalization) and QASM computed eigenenergies for the first three

and four eigenvalues for H;Oj (left) and H;0; (right).

treatment of electron correlation effects in conjunction with a
rigorous treatment of quantum nuclear effects.”>®”%!?1 7194
In this paper, we discuss (a) the Hamiltonian mapping
protocol detailed in ref 138 and (b) a quantum circuit method
based on the Quantum Shannon decomposition for simulating
quantum nuclear dynamics. Using the two methods discussed
here, we simulate the time evolution of the quantum nuclear
wavepacket corresponding to the shared-proton degree of
freedom in a short, strong hydrogen bond in small water
clusters. The Hamiltonian mapping is a general but
approximate mapping procedure between a quantum chemical
dynamics problem, constructed on a single Born—Oppen-
heimer surface, and an ion-trap quantum simulator where the
dynamics are dictated by a generalized form of a spin—lattice
or Ising model Hamiltonian. This is exact for a small number
of qubits, while it becomes approximate for a larger number of
qubits with quantitative error measures. The quantum circuit
decomposition technique, on the other hand, is in principle
exact for a higher number of qubits, but practical
implementation of the circuits remains a challenge for near-
term quantum architectures due to the exponential increase in
the number of entangling gates in the circuit decomposition.
The key step involved in facilitating our Hamiltonian map is
the partitioning of the coupled qubit space into two zones that
we illustrate by using the g-sphere representation of the
computational basis. Once the coupled qubit computational
basis set is partitioned in such a way, the Ising model
Hamiltonian reduces into a block form, thus allowing the
possibility to map all problems that may be written in a similar
block form. The Quantum Shannon decomposition method,
on the other hand, reduces any arbitrary unitary state into a
compact sequence of quantum gates from a universal gate set.
The decomposition is also formally exact for an arbitrary
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dimensional unitary. This can also treat chemical problems
with arbitrary potential energy surfaces and yields a number of
entangling gates close to the expected theoretical lower bound.
Additionally, the QSD formalism has been shown to provide
CNOT gate count close to the theoretical lower bound.'*

We consider intramolecular proton transfers in hydroxide
and protonated water clusters and show how such problems
can be mapped to an ion-trap system, and also show that the
dynamics can be simulated using a quantum circuit
decomposition method on a quantum simulator. General
quantum nuclear dynamics problems, however, have unsym-
metric potential energy surfaces and are generally performed in
higher dimensions. Critical extensions to higher quantum
nuclear dimensions have been implemented using tensor
networks in refs 142 and 140. The methods discussed here will
become critical in extending our mapping protocol to general
potentials in higher dimensions, as will be considered in future
publications.
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